--%>

What are haloalkanes and haloarenes and its properties?

Alkyl halides or haloalkanes are the compounds in which a halogen is bonded to an alkyl group. They have the general formula RX (where R is alkyl group, CnH2n+1 and X is halogen atom). These may be obtained from an alkane by replacement of one hydrogen atom by a halogen atom.

693_haloalkanes.png 

849_haloalkanes1.png 

Alkyl halides are classified as primary, secondary and tertiary alkyl halides depending on whether the halogen atom is attached to a primary, secondary or tertiary carbon atom respectively. For example,

2145_haloalkanes2.png 
     
Halogen derivatives of unsaturated hydrocarbons: replacement of some hydrogen atom in alkenes or alkynes by some halogen atom yields this type of halogen compounds. Some ordinary examples are listed below:

1273_haloalkanes3.png 

    
Aromatic halogen compound or haloarenes are the halogen compounds which contain at least one aromatic ring. Halogen derivatives of aromatic compounds can of two kinds:
    
Aryl halides: in these compounds, the halogen atom is directly combined to the carbon of benzene nucleus. They are also called nuclear substitution derivatives.
    
Aralkyl halides: in this type of compounds, halogen atom is linked to the carbon atom of the side chain. They are also called side chain substitution derivatives. 

The side chain derivatives are very similar to aliphatic halogen derivatives i.e. haloalkanes.
    
The halides in which halogen atom is attached to an sp3-hybridised carbon atom next to a carbon-carbon double bond are known as allylic halides.
    
The halides in which halogen atom is attached to one of the carbon atoms of a carbon-carbon double bond (C=C) are known as vinylic halides.
    
The halides in which halogen atom is attached to a carbon atom next to aromatic ring are known as benzylic halides.
    
In alkyl halides, allyl halides and benzyl halides halogen atom is bonded to an sp3 hybridized carbon atom.

Alkyl, allylic and benzylic halides may be further be classified as primary, secondary and tertiary halides.

In aryl halides and vinyl halides halogens atom is bonded to an sp2 hybridized carbon atom.

   Related Questions in Chemistry

  • Q : Question on Raoults law Give me answer

    Give me answer of this question. For a dilute solution, Raoult's law states that: (a) The lowering of vapour pressure is equal to mole fraction of solute (b) The relative lowering of vapour pressure is equal to mole fraction of solute (c) The relative lowering of v

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Mole fraction Give me answer of

    Give me answer of following question. The sum of the mole fraction of the components of a solution is : (a) 0 (b) 1 (c) 2 (d) 4.

  • Q : Osmotic Pressure The O.P. (Osmotic

    The O.P. (Osmotic Pressure) of equimolar solution of Urea, BaCl2 and AlCl3, will be in the order:(a) AlCl3 > BaCl2 > Urea  (b) BaCl2 > AlCl3 > Urea  (c) Urea > BaCl2<

  • Q : Sugar solution The solution of sugar in

    The solution of sugar in water comprises: (i) Free atoms (ii) Free ions (iii) Free molecules (iv) Free atom and molecules. Choose the right answer from the above.

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Problem on mol fraction of naphthalene

    At 20°C the solubility of solid naphthalene in hexane is 0.09 mol/mol of solution. Use this information and the data below to estimate the following for this system: a) The mol fraction of naphthalene in the vapour phase in equ

  • Q : Cations Chromium(III) hydroxide is

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer

  • Q : Lab question Explain how dissolving the

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately 5.

  • Q : Vapour pressure of benzene Give me

    Give me answer of this question. The vapour pressure of benzene at a certain temperature is 640mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600,mm of Hg . What is the mo