--%>

Pressure Phase Diagrams

The occurrence of different phases of a one component system can be shown on a pressure temperature.

The phases present in a one line system at various temperatures can be conveniently presented on a P- versus-T diagram. An example is provided by the diagram for water for moderate pressures and temperatures. The lien labeled TC shows the pressures and temperatures of liquid and vapour exist in the equilibrium. It is a vapour-pressure curve. At temperatures higher than that of point C, the critical point, liquid vapour pressure does not occur. Therefore this liquid vapour equilibrium line finishes at C.

Consider the changes that occur as a pressure or temperature change results in the system moving in the lien TC. From point 1, for instance, the temperature can be maintained lesser to get to point 2, or the pressure can be increased to get to point 3. In either process one crosses the liquid vapour equilibrium line in the direction of consideration from the vapour to liquid. Notice, however, that if a sample phase carried from point 1 to point 2 or point 3 by a path that goes around C, no phase change will occur.

Line TB gives the temperature and pressure at such solid and vapour are in equilibrium; i.e. it is the curve for the vapour pressure of the solid line TA gives the temperatures and pressures at which ice as a function of pressure equilibrium; i.e. it represents the melting point of ice as a function of pressure. Liquid water can be cooled below its freezing point to give, as indicated by the system. It shows its existence to the fact that the rate of formulation of ice has been interfered with by the use of a very clean sample of water and a smooth container.

It is a convenient representation of all the available information about the phases of water that occurs at moderate pressures and temperatures. It shows the phase behavior of water at very large pressures. Many new phases, corresponding to ice with different crystal structures, are of common and is known as polymorphism. It is particularly remarkable that the melting point of ice VII, which exists above about 20,000 bar pressure, is over 100 degree C.

The most well-known material water that we have utilized as an illustration of P-versus-T phase diagrams is, in some ways, not at all representative. More suitable, in this regard, is one of the solid liquid equilibrium line, TA has a positive slope.

   Related Questions in Chemistry

  • Q : Explain structure basicity of amines.

    Basic character of amines is related to their structural arrangement. Basic strength of amines depends on the relative ease of formation of the corresponding cation by accepting a proton from the acid. Greater the stability of cation is, more is basic strength of amine.Alkyl a

  • Q : Freezing point of equimolal aqueous

    The freezing point of equi-molal aqueous solution will be maximum for:            (a) C6H5NH3+Cl-(aniline hydrochloride)  (b) Ca(NO3

  • Q : Statement of Henry law Determine the

    Determine the correct regarding Henry’s law: (1) The gas is in contact with the liquid must behave as an ideal gas (2) There must not be any chemical interaction among the gas and liquid (3) The pressure applied must be high (4) All of these.

  • Q : Molar mass what is the equation for

    what is the equation for calculating molar mass of non volatile solute

  • Q : Distribution law Help me to go through

    Help me to go through this problem. The distribution law is applied for the distribution of basic acid between : (a) Water and ethyl alcohol (b) Water and amyl alcohol (c) Water and sulphuric acid (d) Water and liquor ammonia

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Haloalkanes define primary secondary

    define primary secondary and tertiary alkyl halides with examples

  • Q : Meaning of molality of a solution The

    The molality of a solution will be: (i) Number of moles of solute per 1000 ml of solvent (ii) Number of moles of solute per 1000 gm of solvent (iii) Number of moles of solute per 1000 ml of solution (iv) Number of gram equivalents of solute per 1000 m

  • Q : Problem on decinormal Select the right

    Select the right answer of the question. How much water is required to dilute 10 ml of 10 N hydrochloric acid to make it exactly decinormal (0.1 N): (a) 990 ml (b) 1000 ml (c) 1010 ml (d) 100 ml

  • Q : Basicity order order of decreasing

    order of decreasing basicity of urea and its substituents