--%>

Explain alcohols and phenols in organic chemistry.

Alcohols and phenols are the compounds containing one or more hydroxyl groups (- OH). The alcohols contain the -OH group attached to alkyl group whereas in phenols, the -OH group is attached to aromatic ring. These are classified as mono-, di- and trihydric alcohols or phenols according to the number of -OH groups contained in their molecules. Some examples of mono-, di- and trihydric alcohols and phenols are as follows:

    Alcohols

2399_alcohol and phenol.png 

It may be noted that the aromatic compounds in which -OH group is not directly attached to benzene ring are not phenols but are called aromatic alcohols. These may also be called as aryl derivatives of aliphatic alcohols. When four or more hydroxyl groups are present, they are called polyhydric alcohols or polyhydric phenols.

Monohydric alcohols may be further classified according to the hybrid state of the carbon atom to which the -OH group is attached.
    
Compounds containing Csp3 ) -OH bond

In this type of alcohols, the -OH group is attached to a sp3 hybridised carbon atom. They are further classify as follows:

Primary (1°), secondary (2°) and tertiary (3°) alcohols

Monohydric alcohols are classified as primary, secondary or tertiary alcohols depending upon whether the hydroxyl group is attached to a primary, secondary or tertiary carbon atom. For instance,

1240_alcohol and phenol1.png 

Allylic alcohols: in allylic alcohols, the -OH group is attached to a sp3-hybridised carbon next to the carbon-carbon double bond, that is to an allylic carbon. For instance,

2066_alcohol and phenol2.png 

Benzylic alcohols: in benzlylic alcohols, the -OH group is attached to a sp3 -hybridised carbon atom next to an aromatic ring. Allylic and benzylic alcohols can be secondary, primary or tertiary.
    
Compounds containing Csp3 )-OH bond:

These alcohols include -OH group bonded to a carbon-carbon double bond i.e. to a vinylic carbon or to an aryl carbon. For example, vinylic alcohols and phenols belong to this class of compounds.

   Related Questions in Chemistry

  • Q : Molecular mass from Raoults law Provide

    Provide solution of this question. Determination of correct molecular mass from Raoult's law is applicable to: (a) An electrolyte in solution (b) A non-electrolyte in a dilute solution (c) A non-electrolyte in a concentrated solution (d) An electrolyte in a liquid so

  • Q : Define tripod and its use Illustrate a

    Illustrate a tripod? And how it’s used?

  • Q : Reducible Representations The number of

    The number of times each irreducible representation occurs in a reducible representation can be calculated.Consider the C2v point group as described or Appendix C. you can see that (1) sum of

  • Q : Nuclear Magnetic Resonance The nuclear

    The nuclear states produced by a magnetic field are studied in nuclear magnetic resonance spectroscopy.The frequency of the radiation that corresponds to the nuclear magnetic energy level spacings and the weakness of the radiation absorption that must be e

  • Q : Relative reactivity Which is more

    Which is more reactive towards nucleophilic substitution aryl halide or vinyl halides

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS

  • Q : Volumes of solution after concentration

    Hydrochloric acid solution A and B encompass concentration of 0.5N and 0.1N  corresspondingly. The volumes of solutions A and B needed to make 2liters of 0.2N of HCL are: (i) 0.5l of A + 1.5l of B (ii) 1.5l of A + 0.5 l of B  (iii) 1.0 l of A + 1.0l of B&nbs

  • Q : Procedure to judge that organic

    Describe briefly the procedure to judge that the given organic compound is pure or not?

  • Q : Electron Spin The total angular

    The total angular momentum of an atom includes an electron spin component as well as an orbital component.The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional

  • Q : Describe chemical properties of amines.

    Like ammonia, primary, secondary and tertiary amines have a single pair of electrons on N atom. Hence chemical behavior of amines is similar to ammonia. Amines are basic in nature, and in most of the reactions they act as nucleophiles.      1. Reaction wi