--%>

Explain solid in liquid solutions.

The French chemist Francois Marie Raoult (1886) carried out a series of experiments to study the vapour pressure of a number of binary solutions. On the basis of the results of the experiments, he proposed a generalization called Raoult's law which states that, 

The vapour pressure of a solution containing non-volatile solute is directly proportional to the mole fraction of the solvent.

In case of solution containing two components A (volatile solvent) and B (non-volatile solute) the vapour pressure of solution is given as

[Vapour pressure of solution] = [vapour pressure of solvent in solution (pA) ∝ [mole fraction of solvent (xA)]
                                                  
Or pA ∝ xA
                                                
Or, pA = kxA

Where k is proportionality constant.

For pure liquid, xA = 1 then k becomes equal to be vapour pressure of the pure solvent which is denoted by pA°.

Thus, p= pA°x                                           (i)

Or psolution × mole fraction of solvent.

For solutions obeying Raoult's law at all concentrations its vapour pressure would vary linearly from zero to the vapour pressure of pure solvent.

If mole fraction of solute is sB, then

xA + xB = 1 or xA = 1 - xB                             (ii)

From eqns. (i) and (ii),

pA = pA°(1 - xB) = pA° - pA°xB

Or, pA° - pA = pA°xB

2263_solids on liquids.png

   Related Questions in Chemistry

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Coordination number of a cation The

    The coordination number of a cation engaging a tetrahedral hole is: (a) 6  (b) 8  (c) 12  (d) 4 Answer: (d) The co-ordination number of a cation occupying a tetrahedral hole is 4.

  • Q : Question on seminormal solution Provide

    Provide solution of this question. The weight of sodium carbonate required to prepare 500 ml of a seminormal solution is: (a) 13.25 g (b) 26.5 g (c) 53 g (d) 6.125 g

  • Q : Eutectic Formation In some two

    In some two component, solid liquid systems, a eutectic mixture forms.Consider, now a two component system at some fixed pressure, where the temperature range treated is such as to include formation of one or more solid phases. A simple behavior is shown b

  • Q : Define alum Illustrate alum?

    Illustrate alum?

  • Q : Ionic radius of chloride ion The edge

    The edge length of the unit cell of Nacl crystal lattice is 552 pm. If ionic radius of sodium ion is 95. What is the ionic radius of chloride ion:(a) 190 pm  (b) 368 pm  (c) 181 pm  (d) 276 pm     <

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : Molar mass lculwhat is the equation for

    lculwhat is the equation for caating molar mass of non volatile solute

  • Q : Isotonic Solutions Which one of the

    Which one of the following pairs of solutions can we expect to be isotonic at the same temperature:(i) 0.1M Urea and 0.1M Nacl  (ii) 0.1M Urea and 0.2M Mgcl2  (iii) 0.1M Nacl and 0.1M Na2SO4  (iv) 0.1M Ca(NO3<

  • Q : Molar concentration Choose the right

    Choose the right answer from following. Molar concentration (M) of any solution : a) No. of moles of solute/Volume of solution in litre (b) No. of gram equivalent of solute / volume of solution in litre (c) No. of moles os solute/ Mass of solvent in kg  (