--%>

Explain solid in liquid solutions.

The French chemist Francois Marie Raoult (1886) carried out a series of experiments to study the vapour pressure of a number of binary solutions. On the basis of the results of the experiments, he proposed a generalization called Raoult's law which states that, 

The vapour pressure of a solution containing non-volatile solute is directly proportional to the mole fraction of the solvent.

In case of solution containing two components A (volatile solvent) and B (non-volatile solute) the vapour pressure of solution is given as

[Vapour pressure of solution] = [vapour pressure of solvent in solution (pA) ∝ [mole fraction of solvent (xA)]
                                                  
Or pA ∝ xA
                                                
Or, pA = kxA

Where k is proportionality constant.

For pure liquid, xA = 1 then k becomes equal to be vapour pressure of the pure solvent which is denoted by pA°.

Thus, p= pA°x                                           (i)

Or psolution × mole fraction of solvent.

For solutions obeying Raoult's law at all concentrations its vapour pressure would vary linearly from zero to the vapour pressure of pure solvent.

If mole fraction of solute is sB, then

xA + xB = 1 or xA = 1 - xB                             (ii)

From eqns. (i) and (ii),

pA = pA°(1 - xB) = pA° - pA°xB

Or, pA° - pA = pA°xB

2263_solids on liquids.png

   Related Questions in Chemistry

  • Q : Anti-aromatic and the non-aromatic

    What is main difference among anti-aromatic and the non-aromatic compounds?

  • Q : How molecule-molecule collisions takes

    An extension of the kinetic molecular theory of gases recognizes that molecules have an appreciable size and deals with molecule-molecule collisions. We begin studies of elementary reactions by investigating the collisions b

  • Q : Examples of reversible reaction

    Describe some examples of a reversible reaction?

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Problem on MM equation How to obtain

    How to obtain relation between Vm and Km,given k(sec^-1) = Vmax/mg of enzyme x molecular weight x 1min/60 sec S* = 4.576(log K -10.753-logT+Ea/4.576T).

  • Q : Define Virial Equation The constant of

    The constant of vander Waal's equation can be related to the coefficients of the virial equation.  Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us

  • Q : Calculate molarity of a solution

    Provide solution of this question. Molarity of a solution prepared by dissolving 75.5 g of pure KOH in 540 ml solution is: (a) 3.05 M (b) 1.35 M (c) 2.50 M (d) 4.50 M

  • Q : Molarity of pure water Choose the right

    Choose the right answer from following. The molarity of pure water is: (a) 55.6 (b) 5.56 (c)100 (d)18

  • Q : Haloalkanes define primary secondary

    define primary secondary and tertiary alkyl halides with examples

  • Q : Haloalkene with the help of polarity of

    with the help of polarity of c-x bond show that aryl halides are less reactive than alkyl halides