--%>

Explain solid in liquid solutions.

The French chemist Francois Marie Raoult (1886) carried out a series of experiments to study the vapour pressure of a number of binary solutions. On the basis of the results of the experiments, he proposed a generalization called Raoult's law which states that, 

The vapour pressure of a solution containing non-volatile solute is directly proportional to the mole fraction of the solvent.

In case of solution containing two components A (volatile solvent) and B (non-volatile solute) the vapour pressure of solution is given as

[Vapour pressure of solution] = [vapour pressure of solvent in solution (pA) ∝ [mole fraction of solvent (xA)]
                                                  
Or pA ∝ xA
                                                
Or, pA = kxA

Where k is proportionality constant.

For pure liquid, xA = 1 then k becomes equal to be vapour pressure of the pure solvent which is denoted by pA°.

Thus, p= pA°x                                           (i)

Or psolution × mole fraction of solvent.

For solutions obeying Raoult's law at all concentrations its vapour pressure would vary linearly from zero to the vapour pressure of pure solvent.

If mole fraction of solute is sB, then

xA + xB = 1 or xA = 1 - xB                             (ii)

From eqns. (i) and (ii),

pA = pA°(1 - xB) = pA° - pA°xB

Or, pA° - pA = pA°xB

2263_solids on liquids.png

   Related Questions in Chemistry

  • Q : Normality how 0.5N HCL is prepared for

    how 0.5N HCL is prepared for 10 littre solution

  • Q : Laws of Chemical Combination Laws of

    Laws of Chemical Combination- In order to understand the composition of the compounds, it is necessary to have a theory which accounts for both qualitative and quantitative observations during chem

  • Q : Illustrate the Lewis Dot Structure

    Illustrate the Lewis Dot Structure for the CH4O.

  • Q : Mole fraction in vapours Choose the

    Choose the right answer from following. If two substances A and B have P0A P0B= 1:2 and have mole fraction in solution 1 : 2 then mole fraction of A in vapours: (a) 0.33 (b) 0.25 (c) 0.52 (d) 0.2

  • Q : Isotonic Solutions Which one of the

    Which one of the following pairs of solutions can we expect to be isotonic at the same temperature:(i) 0.1M Urea and 0.1M Nacl  (ii) 0.1M Urea and 0.2M Mgcl2  (iii) 0.1M Nacl and 0.1M Na2SO4  (iv) 0.1M Ca(NO3<

  • Q : Formula of diesel Write a short note on

    Write a short note on the formula of diesel, petrol and also CNG?

  • Q : Problem related to molarity Provide

    Provide solution of this question. Increasing the temperature of an aqueous solution will cause: (a) Decrease in molality (b) Decrease in molarity (c) Decrease in mole fraction (d) Decrease in % w/w

  • Q : Vapour pressure of water Give me answer

    Give me answer of this question. 5cm3 of acetone is added to 100cm3 of water, the vapour pressure of water over the solution: (a) It will be equal to the vapour pressure of pure water (b) It will be less than the vapour pressure of pure water

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w

  • Q : Calculation of concentration of the

    Choose the right answer from following. 200ml of a solution contains 5.85 dissolved sodium chloride. The concentration of the solution will be(Na= 23: cl = 35.5 ) (a) 1 molar (b) 2 molar (c) 0.5 molar (d) 0.25 molar