--%>

Explain solid in liquid solutions.

The French chemist Francois Marie Raoult (1886) carried out a series of experiments to study the vapour pressure of a number of binary solutions. On the basis of the results of the experiments, he proposed a generalization called Raoult's law which states that, 

The vapour pressure of a solution containing non-volatile solute is directly proportional to the mole fraction of the solvent.

In case of solution containing two components A (volatile solvent) and B (non-volatile solute) the vapour pressure of solution is given as

[Vapour pressure of solution] = [vapour pressure of solvent in solution (pA) ∝ [mole fraction of solvent (xA)]
                                                  
Or pA ∝ xA
                                                
Or, pA = kxA

Where k is proportionality constant.

For pure liquid, xA = 1 then k becomes equal to be vapour pressure of the pure solvent which is denoted by pA°.

Thus, p= pA°x                                           (i)

Or psolution × mole fraction of solvent.

For solutions obeying Raoult's law at all concentrations its vapour pressure would vary linearly from zero to the vapour pressure of pure solvent.

If mole fraction of solute is sB, then

xA + xB = 1 or xA = 1 - xB                             (ii)

From eqns. (i) and (ii),

pA = pA°(1 - xB) = pA° - pA°xB

Or, pA° - pA = pA°xB

2263_solids on liquids.png

   Related Questions in Chemistry

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : Structure of a DNA molecule Elaborate

    Elaborate the structure of a DNA molecule?

  • Q : Preparation of ammonium sulphate Select

    Select the right answer of the question. Essential quantity of ammonium sulphate taken for preparation of 1 molar solution in 2 litres is: (a)132gm (b)264gm (c) 198gm (d) 212gm

  • Q : What are Vander Waal's Radii? Vander

    Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. Diffraction studies of crystals give information about hoe molecules can approach each other and can pack

  • Q : Cations Chromium(III) hydroxide is

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer

  • Q : Law of vapour pressure Select the right

    Select the right answer of the question. "The relative lowering of the vapour pressure is equal to the mole fraction of the solute." This law is called: (a) Henry's law (b) Raoult's law (c) Ostwald's law (d) Arrhenius's law

  • Q : Describe First Order Rate Equation The

    The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation. Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions fo

  • Q : Vapour pressure of methanol in water

    Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water

  • Q : IUPAC name of the benzene Write a short

    Write a short note on the IUPAC name of the benzene?

  • Q : What are emulsions?Describe its

    Emulsions are colloidal solutions in which disperse phase as well as dispersion medium is both liquids. Emulsions can be broadly classified into two types: (i) Oil in water (O/W type) emulsions: in this type of emulsions, oil acts disperse phase and water acts