--%>

Rotational energy and entropy due to rotational motion.

The entropy due to the rotational motion of the molecules of a gas can be calculated.


Linear molecules: as was pointed out, any rotating molecule has a set of allowed rotational energies. For a linear molecule the allowed rotational energies of a molecule of moment of inertia I are given approximated by

1920_rotational energy.png 

Furthermore, the number of states corresponding to a given value of J is given by 2J + 1. These features of the rotational energy patterns allow the rotational partition function to be deduced. This result can be used to obtain the rotational entropy contribution. The rotational contribution to the entropy, which must be added to the rotational contribution, is given by

2218_rotational energy1.png 

The partition function for rotation of a linear molecule obtained is

977_rotational energy2.png    

For a linear molecule, which has just 2 rotational degrees of freedom, the value of U - U0 for rotation was found, with this expression, to be RT. The rotational entropy of a diatomic or a linear polyatomic molecule can thus be written

2119_rotational energy3.png 

When numerical values are inserted for the constants, the rotational contributions of linear molecules to the entropy of ideal gases are given by

rot (J K-1 mol-1) = 877.37 + 8.3144 (In I + In T - In σ) [I in kg m2]

Example: calculate the 25°C rotational entropy of 1 mol of CO molecules. The moment of inertia of a CO molecule, measured by method given is 14.50 × 10-47 kg m2.

Solution: substitution in eq. and recognizing that σ = 1, gives

rot (J K-1 mol-1) = 877.37 + 8.3144[In (14.50 × 10-47) + In 298.15]

= 877.37 + 8.3144 (-105.55 + 5.70)


= 47.17 J K -1 mol-1

For comparison, the translational entropy of 1 mol of CO at 25°C and a pressure of 1 bar is calculated, to be 150.472 J K-1 mol-1.

The much greater translational entropy contribution (compared with the rotational entropy contribution) can be understood in terms of the much closer spacing of the translational energy levels and therefore the much larger number of translational states throughout which the molecules are distributed.

Nonlinear molecules: it is applicable to all diatomic molecules and all linear molecules. Generally shaped molecules, with 3 rather than 2 rotational degrees of freedom, require the use of 3/2 RTfor the rotational energy and the rotational partition function for nonlinear molecules given. For gases composed of such molecules

2366_rotational energy4.png 

With numerical values this becomes

rot (J K-1 mol-1) = 1320.83 + 4.157 In IAIBIC + 12.471 In T - 8.3143 In σ [IA, IB, IC in kg m2]


Limitations: these equations cannot be applied to molecules with very low moments of inertia or at very low temperatures. In both cases the spacing of the energy levels becomes appreciable compared with the thermal energy, and the integration that produced, for example, is not valid.

   Related Questions in Chemistry

  • Q : Thermodynamics I) Sulphur dioxide (SO2)

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267

  • Q : Concentration of Sodium chloride

    Provide solution of this question. If 25 ml of 0.25 M NaCl solution is diluted with water to a volume of 500ml the new concentration of the solution is : (a) 0.167 M (b) 0.0125 M (c) 0.833 M (d) 0.0167 M

  • Q : Molality of Sulfuric acid Choose the

    Choose the right answer from following. The molality of 90% H2SO4 solution is: [density=1.8 gm/ml]  (a)1.8 (b) 48.4 (c) 9.18 (d) 94.6

  • Q : Organic and inorganic chemistry Write

    Write down a short note on the differences between the organic and inorganic chemistry?

  • Q : Precipitation Addition of conc. HCl to

    Addition of conc. HCl to saturated Bacl2 solution precipitates Bacl2 ; because of the following reason : (a) It follows from Le Chatelier's principle (b) Of common-ion effect (c) Ionic product (Ba++)(cl) remains constant in a saturated sol

  • Q : What are halogen oxoacids? Fluorine

    Fluorine yields only one oxyacid, hypo

  • Q : Organic structure of cetearyl alcohol

    Can we demonstration the organic structure of cetearyl alcohol and state me what organic family it is?

  • Q : Problem on endothermic or exothermic At

    At low temperatures, mixtures of water and methane can form a hydrate (i.e. a solid containing trapped methane). Hydrates are potentially a very large source of underground trapped methane in the pole regions but are a nuisance when they form in pipelines and block th

  • Q : Define thermal energy The thermal part

    The thermal part of the internal energy and the enthalpy of an ideal gas can be given a molecular level explanation. All the earlier development of internal energy and enthalpy has been "thermodynamic". We have made no use o

  • Q : Molarity Give me answer of this

    Give me answer of this question. If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is:(a) 0.1M (b) 0.2M (c)0.3M (d)0.4M