--%>

Rotational energy and entropy due to rotational motion.

The entropy due to the rotational motion of the molecules of a gas can be calculated.


Linear molecules: as was pointed out, any rotating molecule has a set of allowed rotational energies. For a linear molecule the allowed rotational energies of a molecule of moment of inertia I are given approximated by

1920_rotational energy.png 

Furthermore, the number of states corresponding to a given value of J is given by 2J + 1. These features of the rotational energy patterns allow the rotational partition function to be deduced. This result can be used to obtain the rotational entropy contribution. The rotational contribution to the entropy, which must be added to the rotational contribution, is given by

2218_rotational energy1.png 

The partition function for rotation of a linear molecule obtained is

977_rotational energy2.png    

For a linear molecule, which has just 2 rotational degrees of freedom, the value of U - U0 for rotation was found, with this expression, to be RT. The rotational entropy of a diatomic or a linear polyatomic molecule can thus be written

2119_rotational energy3.png 

When numerical values are inserted for the constants, the rotational contributions of linear molecules to the entropy of ideal gases are given by

rot (J K-1 mol-1) = 877.37 + 8.3144 (In I + In T - In σ) [I in kg m2]

Example: calculate the 25°C rotational entropy of 1 mol of CO molecules. The moment of inertia of a CO molecule, measured by method given is 14.50 × 10-47 kg m2.

Solution: substitution in eq. and recognizing that σ = 1, gives

rot (J K-1 mol-1) = 877.37 + 8.3144[In (14.50 × 10-47) + In 298.15]

= 877.37 + 8.3144 (-105.55 + 5.70)


= 47.17 J K -1 mol-1

For comparison, the translational entropy of 1 mol of CO at 25°C and a pressure of 1 bar is calculated, to be 150.472 J K-1 mol-1.

The much greater translational entropy contribution (compared with the rotational entropy contribution) can be understood in terms of the much closer spacing of the translational energy levels and therefore the much larger number of translational states throughout which the molecules are distributed.

Nonlinear molecules: it is applicable to all diatomic molecules and all linear molecules. Generally shaped molecules, with 3 rather than 2 rotational degrees of freedom, require the use of 3/2 RTfor the rotational energy and the rotational partition function for nonlinear molecules given. For gases composed of such molecules

2366_rotational energy4.png 

With numerical values this becomes

rot (J K-1 mol-1) = 1320.83 + 4.157 In IAIBIC + 12.471 In T - 8.3143 In σ [IA, IB, IC in kg m2]


Limitations: these equations cannot be applied to molecules with very low moments of inertia or at very low temperatures. In both cases the spacing of the energy levels becomes appreciable compared with the thermal energy, and the integration that produced, for example, is not valid.

   Related Questions in Chemistry

  • Q : Question based on mole concept Help me

    Help me to solve this Question. The number of moles of SO2Cl2 in 13.5 gm is in is : (a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4

  • Q : Calculating weight of acid Give me

    Give me answer of this question. The formula weight of H2SO4 is 98. The weight of the acid in 400mi of solution is: (a)2.45g (b) 3.92g (c) 4.90g (d) 9.8g

  • Q : Neutralization of benzoic acid Choose

    Choose the right answer from following. How many grams of NaOH will be required to neutralize 12.2 grams of benzoic acid : (a) 40gms (b) 4gms (c)16gms (d)12.2gms

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Relationship between Pressure and

    The pressure-temperature relation for solid-vapor or liquid vapor equilibrium is expressed by the Clausis-Clapeyron equation.We now obtain an expression for the pressure-temperature dependence of the state of equilibrium between two phases. To be specific,

  • Q : Problem on convection coefficient An

    An experiment to determine the convection coefficient associated with airflow over the surface of a thick stainless steel casting involves insertion of thermocouples in the casting at distances of 10 mm and 20 mm from the surface.  When the experiment was perform

  • Q : Why acetic has less conductivity than

    Illustrate the reason, why acetic has less conductivity than Hcl?

  • Q : Describe chemical properties of amines.

    Like ammonia, primary, secondary and tertiary amines have a single pair of electrons on N atom. Hence chemical behavior of amines is similar to ammonia. Amines are basic in nature, and in most of the reactions they act as nucleophiles.      1. Reaction wi

  • Q : Microwave Adsorption The absorption of

    The absorption of microwave radiation increases the rotational energy of molecules and gives information about the moment of inertia of the molecules.Now we can begin the study of the spectroscopy that explores the different ways in which the energy of the

  • Q : Molarity 20mol of hcl solution requires

    20mol of hcl solution requires 19.85ml of 0.01 M NAOH solution for complete neutralisation. the molarity of hcl solution