Rotational energy and entropy due to rotational motion.

The entropy due to the rotational motion of the molecules of a gas can be calculated.


Linear molecules: as was pointed out, any rotating molecule has a set of allowed rotational energies. For a linear molecule the allowed rotational energies of a molecule of moment of inertia I are given approximated by

1920_rotational energy.png 

Furthermore, the number of states corresponding to a given value of J is given by 2J + 1. These features of the rotational energy patterns allow the rotational partition function to be deduced. This result can be used to obtain the rotational entropy contribution. The rotational contribution to the entropy, which must be added to the rotational contribution, is given by

2218_rotational energy1.png 

The partition function for rotation of a linear molecule obtained is

977_rotational energy2.png    

For a linear molecule, which has just 2 rotational degrees of freedom, the value of U - U0 for rotation was found, with this expression, to be RT. The rotational entropy of a diatomic or a linear polyatomic molecule can thus be written

2119_rotational energy3.png 

When numerical values are inserted for the constants, the rotational contributions of linear molecules to the entropy of ideal gases are given by

rot (J K-1 mol-1) = 877.37 + 8.3144 (In I + In T - In σ) [I in kg m2]

Example: calculate the 25°C rotational entropy of 1 mol of CO molecules. The moment of inertia of a CO molecule, measured by method given is 14.50 × 10-47 kg m2.

Solution: substitution in eq. and recognizing that σ = 1, gives

rot (J K-1 mol-1) = 877.37 + 8.3144[In (14.50 × 10-47) + In 298.15]

= 877.37 + 8.3144 (-105.55 + 5.70)


= 47.17 J K -1 mol-1

For comparison, the translational entropy of 1 mol of CO at 25°C and a pressure of 1 bar is calculated, to be 150.472 J K-1 mol-1.

The much greater translational entropy contribution (compared with the rotational entropy contribution) can be understood in terms of the much closer spacing of the translational energy levels and therefore the much larger number of translational states throughout which the molecules are distributed.

Nonlinear molecules: it is applicable to all diatomic molecules and all linear molecules. Generally shaped molecules, with 3 rather than 2 rotational degrees of freedom, require the use of 3/2 RTfor the rotational energy and the rotational partition function for nonlinear molecules given. For gases composed of such molecules

2366_rotational energy4.png 

With numerical values this becomes

rot (J K-1 mol-1) = 1320.83 + 4.157 In IAIBIC + 12.471 In T - 8.3143 In σ [IA, IB, IC in kg m2]


Limitations: these equations cannot be applied to molecules with very low moments of inertia or at very low temperatures. In both cases the spacing of the energy levels becomes appreciable compared with the thermal energy, and the integration that produced, for example, is not valid.

   Related Questions in Chemistry

  • Q : What are the chemical properties of

    Haloalkanes are extremely reactive category of aliphatic compounds. Their reactivity is due to the presence of polar carbon-halogen bond in their mole

  • Q : IUPAC name of the benzene Write a short

    Write a short note on the IUPAC name of the benzene?

  • Q : Coordination compounds discuss

    discuss practical uses of coordination compounds

  • Q : Problem on equilibrium constant Ethanol

    Ethanol is manufactured from carbon monoxide and hydrogen at 600 K and 20 bars according to the reaction2 C0(g) + 4 H2(g) ↔ C2H5OH(g) + H2O (g)The feed stream contains 60 mol% H2, 20 m

  • Q : Reason for medications contain hcl What

    What is the reason behind this that some medications contain hcl?

  • Q : Explain equilibrium and molecular

    The equilibrium constant can be treated as a particular type of molecular distribution. Consider the simplest gas-phase reaction, one in which molecules of A are converted to molecules of B. the reaction, described by the equation

    Q : Molarity of Sodium hydroxide Select the

    Select the right answer of the question. Molarity of 4% NaOH solution is : (a) 0.1M (b) 0.5M (c) 0.01M (d) 0.05M

  • Q : Rotational energy and entropy due to

    The entropy due to the rotational motion of the molecules of a gas can be calculated. Linear molecules: as was pointed out, any rotating molecule has a set of allowed rotational energies. For a linear molecule the

  • Q : Mole fraction in vapours Choose the

    Choose the right answer from following. If two substances A and B have P0A P0B= 1:2 and have mole fraction in solution 1 : 2 then mole fraction of A in vapours: (a) 0.33 (b) 0.25 (c) 0.52 (d) 0.2

  • Q : Explain physical properties of

    . Boiling pointsThe boiling points of monohalogen derivatives of benzene, which are all liquids, follow the orderIodo > Bromo > ChloroThe boiling points of isomeric dihalobe

©TutorsGlobe All rights reserved 2022-2023.