--%>

Dipole attractions-London dispersion forces-hydrogen bonding

Describe how dipole attractions, London dispersion forces and the hydrogen bonding identical?

E

Expert

Verified

They all are forces of attraction which is employed to keep the molecules altogether. As the molecules and atoms bonded altogether, there are no electrons, or not sufficient, left over to bond with more atoms. The outcome would be trillions of minute molecules floating about. Rather, each of such kinds of attractions draws the molecules altogether into solids, liquids and gases.

   Related Questions in Chemistry

  • Q : Explain physical properties of

    . Boiling pointsThe boiling points of monohalogen derivatives of benzene, which are all liquids, follow the orderIodo > Bromo > ChloroThe boiling points of isomeric dihalobe

  • Q : Hybridization Atomic orbitals can be

    Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules. Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive a

  • Q : Precipitation problem On passing H 2 S 

    On passing H2S  gas through a solution of Cu+ and Zn+2 ions, CuS is precipitated first because: (i) Solubility product of CuS is equal to the ionic product of ZnS (ii) Solubility product of CuS is equal to the solubility product o

  • Q : What is laser and explain its working?

    Laser action relies on a non-Boltzmann population inversion formed by the absorption of radiation and vibrational deactivation that forms a long lived excited electronic state. An excited state molecule can move to a lower energy state or return to the

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Problem on vapour pressure and mole

    Provide solution of this question. The vapour pressure of a solvent decreased by 10 mm of mercury, when a non-volatile solute was added to the solvent. The mole fraction of the solute in the solution is 0.2. What should be the mole fraction of the solvent, if decrea

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Effect of addition of mercuric iodide

    Give me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the:(a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : Problem on vapour pressure Choose the

    Choose the right answer from following. If P and P are the vapour pressure of a solvent and its solution respectively N1 and N2 and are the mole fractions of the solvent and solute respectively, then correct relation is: (a) P= PoN1 (b) P= Po N2 (c)P0= N2 (d)