Dipole attractions-London dispersion forces-hydrogen bonding
Describe how dipole attractions, London dispersion forces and the hydrogen bonding identical?
Expert
They all are forces of attraction which is employed to keep the molecules altogether. As the molecules and atoms bonded altogether, there are no electrons, or not sufficient, left over to bond with more atoms. The outcome would be trillions of minute molecules floating about. Rather, each of such kinds of attractions draws the molecules altogether into solids, liquids and gases.
. Boiling pointsThe boiling points of monohalogen derivatives of benzene, which are all liquids, follow the orderIodo > Bromo > ChloroThe boiling points of isomeric dihalobe
Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules. Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive a
On passing H2S gas through a solution of Cu+ and Zn+2 ions, CuS is precipitated first because: (i) Solubility product of CuS is equal to the ionic product of ZnS (ii) Solubility product of CuS is equal to the solubility product o
Laser action relies on a non-Boltzmann population inversion formed by the absorption of radiation and vibrational deactivation that forms a long lived excited electronic state. An excited state molecule can move to a lower energy state or return to the
Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)
Provide solution of this question. The vapour pressure of a solvent decreased by 10 mm of mercury, when a non-volatile solute was added to the solvent. The mole fraction of the solute in the solution is 0.2. What should be the mole fraction of the solvent, if decrea
37% weight of HCl and density is 1.1g/ml. find molarity of HCl
Give me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the:(a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change
Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of moles of solute/ Mass of solvent in kg (d) no. of moles of any
Choose the right answer from following. If P and P are the vapour pressure of a solvent and its solution respectively N1 and N2 and are the mole fractions of the solvent and solute respectively, then correct relation is: (a) P= PoN1 (b) P= Po N2 (c)P0= N2 (d)
18,76,764
1947150 Asked
3,689
Active Tutors
1454862
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!