--%>

Linde liquefaction process

Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage compresses the gas from 1 bar to 5 bar, the second stage from 5 bar to 25 bar, and the tiiird stage from 25 bar to 100 bar. Between stages the gas Is isobarically cooled to 280 K. Each stage of the compressor can be assumed to operate reversibly and adiabaticaliy. The methane leaving the cooler is at 100 bar and 210 K (point 3). The flash dram is adiabatic and operates at! bar. The recycled methane leaving the heat exchanger (point 5') is at I bar and 200 K.

a) Calculate the fractions of vapour and liquid leaving the flash drum {Hint: write balance equations around the subsystem consisting of the heat exchanger, throttle valve and flash drum).

b) Calculate the temperature at the inlet of the compressor (point I).

c) Calculate the amount of work required for each kilogram of methane that passes through the compressor.

d) Calculate the amount of compressor work required for each kilogram of LNG produced.

e) Calculate

i) the heat removal after the first and second stages of the compressor,
ii) the heat removed in the cooler, and
iii) the heat exchanged in the heat exchanger.

Express all values in kJ/kg of methane that passes through the compressor.

Data: The thermodynamic properties of methane are given in the attached diagram.

71_diagram.jpg

   Related Questions in Chemistry

  • Q : Concentration of urea Help me to go

    Help me to go through this problem. 6.02x 1020 molecules of urea are present in 100 ml of its solution. The concentration of urea solution is: (a) 0.02 M (b) 0.01 M (c) 0.001 M (d) 0.1 M (Avogadro constant, N4= 6.02x 1023mol -1)<

  • Q : Problem on melting of ice A) It has

    A) It has been suggested that the surface melting of ice plays a role in enabling speed skaters to achieve peak performance. Carry out the following calculation to test this hypothesis. Suppose that the width of the skate in contact with the ice has been reduced by sh

  • Q : Problem related to molality Help me to

    Help me to solve this problem. What is the molality of a solution which contains 18 g of glucose (C6,H12, O6) in 250 g of water:  (a) 4.0 m (b) 0.4 m (c) 4.2 m (d) 0.8 m

  • Q : Symmetry Elements The symmetry of the

    The symmetry of the molecules can be described in terms of electrons of symmetry and the corresponding symmetry operations.Clearly some molecules, like H2O and CH4, are symmetric. Now w

  • Q : How molecule-molecule collisions takes

    An extension of the kinetic molecular theory of gases recognizes that molecules have an appreciable size and deals with molecule-molecule collisions. We begin studies of elementary reactions by investigating the collisions b

  • Q : Explain structure basicity of amines.

    Basic character of amines is related to their structural arrangement. Basic strength of amines depends on the relative ease of formation of the corresponding cation by accepting a proton from the acid. Greater the stability of cation is, more is basic strength of amine.Alkyl a

  • Q : Calculating weight of acid Give me

    Give me answer of this question. The formula weight of H2SO4 is 98. The weight of the acid in 400mi of solution is: (a)2.45g (b) 3.92g (c) 4.90g (d) 9.8g

  • Q : Molecular substances what are the most

    what are the most important inorganic molecular substances for living beings?

  • Q : Normality of solution containing

    Can someone please help me in getting through this problem. Determine the normality of a solution having 4.9 gm H3PO4 dissolved in 500 ml water: (a) 0.3  (b) 1.0  (c) 3.0   (d) 0.1

  • Q : Describe Transformation Matrices. Each

    Each symmetry operation can be represented by a transformation matrix.You have seen what happens when a molecule is subjected to the symmetry operation that corresponds to any of the symmetry elements of the point group to which the molecule belongs. The m