--%>

Describe properties of carboxylic acids.

1. Physical state: the first three aliphatic acids are colourless liquids with pungent smell. The next six are oily liquids with an odour of rancid butter while the higher members are colourless, odourless waxy solids. Benzoic acid is referred to as crystalline solid.


2. Solubility the first four aliphatic members are soluble in water due to intermolecular hydrogen bonding with water molecules.

With increasing size of alkyl groups, the non-polar part of the molecule predominates thereby reducing the solubility in water. The higher members are almost insoluble in water.

3. Boiling points: carboxylic acids have quite high boiling points due to presence of intermolecular hydrogen bonding which results in the formation of dimeric structures. 

Due to dimeric structure, the effective molecular mass of the acid becomes double the actual mass. Hence, carboxylic acids have higher boiling points than alcohols of comparable molecular masses. Moreover, O-H bond in carboxylic acids is more polar than O-H bond in alcohols. This is due to electron withdrawing effect of carbonyl group on O-H. Hence, H-bonds in carboxylic acids are comparatively stronger than those of that in alcohols.

4. Melting points: in first ten members of homologous series, the alternation effect is observed. The alternation effect implies that the melting point of an acid with even number of carbon atom is higher than the acid with odd number of carbon atoms above and below it. However, no such effect is observed in homologues with more than ten carbons. The alternation effect can be explained on the basis of the fact that the carboxylic acids with even number of carbon atoms, the terminal methyl group and carboxyl group of the opposite sides of zig-zag carbon chain. Hence, they fit better in the crystal lattice and it results in stronger intermolecular forces. On the other hand, acids with odd number of C atoms have carboxyl and terminal methyl number of C atoms has carboxyl and terminal methyl groups on the same side of zig-zag carbon chain. Therefore, such molecules being relatively unsymmetrical, fit poorly in the crystal lattice. This causes weaker intermolecular forces and accounts for the relatively lower melting points.
268_carboxylic acid.png 
Even number of C-atoms, fit better, in crystal lattice, have higher m.pts (Terminal groups are on opposite side)
2096_carboxylic acid1.png 
Odd numbers of C-atoms, fit properly, in crystal lattice, have lower m.pts. (Terminal groups are on same side).    

The melting and boiling points of aromatic acids are generally higher than those of aliphatic acids of similar molecular masses. This is presumably due to the fact that planar benzene ring in these acids can pack closely in the crystal lattice than zig-zag aliphatic acids.

   Related Questions in Chemistry

  • Q : Calculating density of water using

    What is the percent error in calculating the density of water using the ideal gas law for the following conditions:  a. 110 oC, 1 bar   b. 210 oC 10 bar  c. 374 o

  • Q : Units of Measurement Unit of

      Unit of measurement- These are also some systems for units:      (1) 

  • Q : Calculating total vapour pressure

    Select the right answer of the question. The vapour pressure of two liquids P and Q are 80 and 600 torr, respectively. The total vapour pressure of solution obtained by mixing 3 mole of P and 2 mole of Q would be: (a) 140 torr (b) 20 torr (c) 68 torr (d) 72 torr

  • Q : Neutralisation of phosphorous acids

    Provide solution of this question. To neutralise completely 20 mL of 0.1 M aqueous solution of phosphorous acid (H3 PO3) the volume of 0.1 M aqueous KOH solution required is: (a) 40 mL (b) 20 mL (c) 10 mL (d) 60 mL

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1

  • Q : Problem on Molar solution Can someone

    Can someone please help me in getting through this problem. 2.0 molar solution is acquired, when 0.5 mole solute is dissolved in: (i) 250 ml solvent (ii) 250 g solvent (iii) 250 ml solution (iv) 1000 ml solvent

  • Q : Explain structure basicity of amines.

    Basic character of amines is related to their structural arrangement. Basic strength of amines depends on the relative ease of formation of the corresponding cation by accepting a proton from the acid. Greater the stability of cation is, more is basic strength of amine.Alkyl a

  • Q : Solution problem What is the correct

    What is the correct answer. To made a solution of concentration of 0.03 g/ml of AgNO3, what quantity of AgNO3 must be added in 60 ml of solution: (a) 1.8  (b) 0.8  (c) 0.18  (d) None of these

  • Q : Simulate the column in HYSYS The

    The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study). 100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the m

  • Q : What are haloalkanes and haloarenes and

    Alkyl halides or haloalkanes are the compounds in which a halogen is bonded to an alkyl group. They have the general formula RX (where R is alkyl grou