MOS Transistor Inverter: Static Characteristics IIMOS Inverter Voltage Transfer Characteristic:The schematic figure of simple MOS transistor inverter with a resistive load is repeated in figure shown below. Since with the simple bipolar transistor inverter, the transfer characteristic can be plotted as output voltage against input voltage, Vo vs. Vin as shown in figure below.
Figure: Schematic Diagram of Simple MOS Inverter
Initially, with Vi = 0 the input voltage to transistor is beneath threshold voltage and the transistor is OFF or non-conducting and therefore the output voltage is pulled up to the supply voltage VDD. Once the input voltage is raised to be equivalent to the threshold voltage, VT, the transistor starts to conduct and therefore the output voltage drops. As VDS > VGS – VT, the transistor operates initially in saturation region. Since the input voltage is further raised, the output voltage continues to drop until ultimately VDS < VGS – VT and the transistor comes out of the saturation region to operate in non-saturation region. Ultimately the input voltage reaches an utmost of VDD and the output reaches its minimum value of VOL as formerly computed.
Figure: Voltage Transfer Characteristic of Simple MOS Transistor Inverter
Critical Logic Voltages:The similar critical input and output logic voltages can be stated as for other logic families viz.:ViLMAX = maximum voltage acceptable as the logic LO input
ViHMIN = minimum voltage acceptable as the logic HI input.
VOLMAX = maximum voltage acceptable as the logic LO output.
VOHMIN = minimum voltage acceptable as the logic HI output.a) Critical Point ViL MAX, VOH MIN:This is the point on upper left-hand portion of transfer characteristic where the slope is -1. At this point, the transistor can be taken to operate in the saturation region where, neglecting the consequences of channel length modulation for simplicity, the drain current is explained as:ID = Kn(VGS - VT)2However as VO = VDS and Vi = VGS and VO = VDD – iDRD then:Vo = VDD – KnRD (Vi - VT)2.......................... (a)On expanding it gives:Vo = VDD - KnRDVi2 + 2 KnRDViVT - KnRDVT2On differentiating:∂Vo/∂Vi = - 2 KnRDVi + 2 KnRDVTAt critical point ∂Vo/∂Vi = -1 with Vi = ViL MAX and VO = VOH MIN and hence:- 2 KnRDVi + 2 KnRDVT = - 12 KnRDViLMAX = 1 + 2 KnRDVTAnd hence,ViLMAX = VT + 1/(2 KnRD)This value is a slight higher than VT and for illustration given with VT = 1V, RD = 100kΩ and Kn = 100µAV-2, ViL MAX = 1.05V.Replacing back into equation (a) to find out the output voltage for this coordinate gives:VOHMIN = VDD – KnRD(ViL MAX - VT)2VOHMIN = VDD – KnRD[VT + (1/ KnRD) - VT]2And hence ultimately:VOHMIN = VDD – (1/4 KnRD)This value is a slight lower than VDD and for illustration given with VDD = 10V, VT = 1V, RD = 100kΩ and Kn = 100µAV-2, VOH MIN = 9.98V. The coordinate of critical point (a) is then:ViLMAX, VOHMIN = 1.05, 9.98 Vb) Critical Point ViH MIN, VOL MAXThis is the point on lower right-hand portion of the characteristic where slope is -1. At this point, the transistor can be taken to operate in non-saturation region where the drain current is explained as:ID = Kn[2(VGS - VT)VDS – V2DS]However again, as VO = VDS and Vi = VGS and VO = VDD – iDRD then:VO = VDD – 2 KnRD (Vi - VT) Vo + KnRDVo2On expanding:VO = VDD – 2 KnRDViVo + 2 KnRDVTVo + KnRDVo2On rearranging:VO [1 - KnRDVT] = VDD - 2 KnRDViVo + KnRDVo2There is a choice here to employ implicit differentiation to find ∂Vo/∂Vi or to re-arrange the expression as Vi in terms of VO and then determine ∂Vi/∂Vo. The latter is simpler as there is just one term in Vi. Then,2 KnRDViVo = VDD – [1 - 2 KnRDVT]Vo + KnRDVo2And hence,Vi = VDD/(2 KnRDVo) – [(1 - 2 KnRDVT)/ 2 KnRD) + (Vo/2)............... (b)Then,∂Vo/∂Vi = - VDD/(2 KnRDVo2) + (1/2)For ∂Vo/∂Vi = -1 we can employ ∂Vi/∂Vo= -1 and hence:- (VDD/2 KnRDVo2) + (1/2) = - 1(VDD/2 KnRDVo2) = 3/2Vo2 = VDD/3 KnRDBy taking the positive root as practical value gives:VOLMAX = √VDD/3KnRDThat for the illustration given with VDD = 10V, VT = 1V, RD = 100kΩ and Kn = 100µAV-2 , VOL MAX = 0.58V.This is significantly higher than the great value of VOL computed formerly. Then replacing this back into the expression for Vi in equation (b) above gives:
And therefore ultimately the critical input value is as shown:ViHMIN = VT + 2√VDD/3KnRD – (1/2 KnRD)That for illustration given with VDD = 10V, VT = 1V, RD = 100kΩ and Kn = 100µAV-2 provides ViH MIN = 2.1V. This gives the coordinates of critical point (b) as:ViHMIN, VOLMAX = 2.1, 0.58 VNoise Margins:Ultimately, the noise margins for simple MOS inverter can be computed approximately from the critical points evaluated from the transfer characteristic as shown:NMH = VOHMIN – ViHMIN = 9.98 – 2.1 = 7.88VNML = ViLMAX – VOLMAX = 1.05 – 0.58 = 0.47V
Latest technology based Electrical Engineering Online Tutoring Assistance
Tutors, at the www.tutorsglobe.com, take pledge to provide full satisfaction and assurance in Electrical Engineering help via online tutoring. Students are getting 100% satisfaction by online tutors across the globe. Here you can get homework help for Electrical Engineering, project ideas and tutorials. We provide email based Electrical Engineering help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Electrical Engineering. Through Online Tutoring, you would be able to complete your homework or assignments at your home. Tutors at the TutorsGlobe are committed to provide the best quality online tutoring assistance for Electrical Engineering Homework help and assignment help services. They use their experience, as they have solved thousands of the Electrical Engineering assignments, which may help you to solve your complex issues of Electrical Engineering. TutorsGlobe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.
www.tutorsglobe.com offers organometallic reagents homework help, organometallic reagents assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
solutions and phase equilibrium tutorial all along with the key concepts of pure substances and solutions, differentiating between pure substances and solutions, phase equilibrium and definition of phase
Oil well, Oil field and reservoir tutorial all along with the key concepts of Oil Reservoir, Traps, Structural Traps, Stratigraphic Traps, Estimating Reserves, Oil in Place, Formation Volume Factor, Reservoir Engineering
By Armature test, defects might be revealed that might have take place during winding. The general defects in armature windings are grounding, open in the coil, shorts in the coils, and reversal in the coil connection.
tutorsglobe.com compensated demand curve assignment help-homework help by online demand tutors
Morphology and Anatomy of Seed Plant tutorial all along with the key concepts of Life Span of a Plant, Morphology of seed plants, The Flower, Fruits and Seeds, Leaves, Stem and Roots
www.tutorsglobe.com offers coupling homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
www.tutorsglobe.com offers Enhance Readability homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
Algae tutorial all along with the key concepts of Categorization into Groups, Structure of Spirogyra, Adaptation of Spirogyra, Structure of Fucus, Adaptations of Fucus and Benefits of algae
Theory and lecture notes of Benefits of Monopoly all along with the key concepts of Scale Economies, Research and Development, Regulating Monopoly, Two-tier Pricing, Rate-of-Return Regulation. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Benefits of Monopoly.
looking for instant and first class set theory assignment help service? hire phd experts and get authentic papers with 24x7 support to score a++.
tutorsglobe.com identification of cultures assignment help-homework help by online laboratory diagnosis of typhoid tutors
www.tutorsglobe.com offers Object Oriented Analysis homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
Electronic devices tutorial all along with the key concepts of Electronic devices and components, History of electronic components, Electricity and electronics, Analog and digital electronics, common Electronic Components and Electronic circuits
www.tutorsglobe.com offers Evolution of Programming Language homework help, assignment help, case study, writing homework help, online tutoring assistance by computer science tutors.
1964759
Questions Asked
3689
Tutors
1456352
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!