--%>

What is Distillation

Separation by distillation can be described with a boiling point diagram. 

The important process of distillation can now be investigated. From the boiling point diagram one can see that if a small amount of vapour were removed from a liquid of composition a, the vapour would have a composition higher in the more voltaic component than the original solution a. such a single step is, of course, inadequate for any appreciable separation of two components unless they have extremely different boiling points. In practice, a process of fractional distillation is used, in which the separation step is just described is, in effect, repeated by condensing some of the vapour, boiling off some vapour from this new liquid, collecting and vaporizing this product, and so forth. This procedure has the effect of stepping across the boiling point diagram.

The efficiency of a distillation column is determined by the number of theoretical plates to which the separation it performs corresponds. For example, a column supplied with a charge of composition a, is operated at total reflux until equilibrium is established. A small sample of distillate is then drawn off and analyzed and has, say, composition b. the separation that has resulted corresponds to four evaporations and condensations, and the column is said to have four theoretical plates.

For a solution showing a maximum vapour pressure and a maximum boiling point, the distillation process is indicated by the dashed lines. Regardless of the initial solution, distillation in a fractional distillation unit results ultimately in a distillate of the composition of the maximum boiling point mixture. One or the other of the pure components could be prepared only by working with the residue. The most important commercial solution that shows this behavior is the water ethanol system. Fermentation processes result in an ethanol concentration of about 10 percent. The object of distillation is to increase this concentration and possibly to yield pure ethanol. The boiling point diagram shows that distillation at atmospheric pressure can yield, at best, a distillate of 95 percent ethanol.

A different situation arises with the solutions that shows a maximum in their boiling points curves, like the system of such a solution which is merely boiled away, the residue will approach the composition corresponding to the maximum of the boiling point curve and the boiling point at this temperature and will not been reached, the remaining solution will boil at this temperature and will not change its composition.

Although in the case of an azeotrope we are dealing with a constant temperature constant composition boiling mixture, this mixture is not to be regarded as a compound that is formed between the two components. A change in the total pressure is usually sufficient to show that the azeotropic composition can be changed.

   Related Questions in Chemistry

  • Q : Neutralization of sodium hydroxide How

    How much of NaOH is needed to neutralise 1500 cm3 of 0.1N HCl (given = At. wt. of Na =23): (i) 4 g  (ii) 6 g (iii) 40 g  (iv) 60 g

  • Q : Chem Explain how dissolving the Group

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : Molarity of the final mixture Can

    Can someone please help me in getting through this problem. Two solutions of a substance (that is, non electrolyte) are mixed in the given manner 480 ml of 1.5M first solution + 520 ml of 1.2M second solution. Determine the molarity of the final mixture

  • Q : Simulate the column in HYSYS The

    The objective of this work is to separate a binary mixture and to cool down the bottom product for storage. (Check table below to see which mixture you are asked to study). 100 kmol of feed containing 10 mol percent of the lighter component enters a continuous distillation column at the m

  • Q : Question based on lowest vapour pressure

    Give me answer of this question. Among the following substances the lowest vapour pressure is exerted by: (a) Water (b) Mercury (c) Kerosene (d) Rectified spirit

  • Q : Finding Active mass of urea Can someone

    Can someone please help me in getting through this problem. 10 litre solution of urea comprises of 240 gm urea. The active mass of urea is: (i) 0.04 (ii) 0.02 (iii) 0.4 (iv) 0.2

  • Q : What are various structure based

    This classification of polymers is based upon how the monomeric units are linked together. Based on their structure, the polymers are classified as: 1. Linear polymers: these are the polymers in which monomeric units are linked together to form long straight c

  • Q : Question related to molarity Help me to

    Help me to go through this problem. Molarity of a solution containing 1g NaOH in 250ml of solution: (a) 0.1M (b) 1M (c) 0.01M (d) 0.001M

  • Q : What is synthetic rubber and how it

    To meet human needs, scientists have started preparing synthetic rubbers. Besides having similar properties as natural rubbers they are tougher, more flexible and more durable than natural rubber. They are capable of getting stretched to twice its length. Though, it reverts to its original shape

  • Q : Dipole attractions for london dispersion

    Illustrate how are dipole attractions London dispersion forces and hydrogen bonding similar?