--%>

Explain the polymers and its types.

Polymers are the chief products of modern chemical industry which form the backbone of present society. Daily life without the discovery and varied applications of polymers would not have been easier and colourful. The materials made of polymers find multifarious uses and applications in all walks of our life. They have influenced our day to day life to such an extent that it is impossible to get through the day without using a material based on polymers. Common examples of these include plastic dishes, cups, non-stick. Pans, automobile tyres and seat covers, plastic bags, rain coats, plastic pipes and fitting radio, TV and computer cabinets; wide range of synthetic fibres for clothing, synthetic glues, flooring materials and materials for biomedical and surgical operations. 

Word polymer means "many parts" (Greek: poly means many and merors means parts). A polymer is a compound of high molecular mass created by the mixture of large number of small molecules. The small molecules which comprise the repeating units in a polymer are known as monomer units. The process by which the monomers are transformed into polymer is called polymerization. For example, polyethylene is a polymer which is obtained by the polymerization of ethylene. The ethylene molecules are referred to as monomer units.
1000_Polymers.png 
As polymers are single and giant molecules, i.e. big size molecules, they are also known as macromolecules.

Homopolymers and copolymers

Polymers are divided into two broad categories depending upon the nature of the repeating structural units. These are homopolymers and co-polymers.

The polymer formed from one kind of monomer is called homopolymers while polymer formed from more than one kind of monomer units is called copolymer or mixed polymer. For example, polyethylene is an example of homopolymers whereas Buna-S rubber which is formed from 1, 3-butadiene (CH2 = CH - CH = CH2) and styrene (C6H5CH = CH2) is an example of copolymer. 

 

 

 

   Related Questions in Chemistry

  • Q : What are ion selective electrodes? Ion

    Ion Selective Electrodes An ion selective membrane can be used to form an electrochemical cell whose emf depends on the concentration of that ion. Before we proceed to an important application of emf measurements, brie

  • Q : Iso-electronic species Which ion has

    Which ion has the lowest radius from the following ions(a) Na+  (b) Mg2+  (c) Al3+  (d) Si4+ Answer: (d) All are the iso-electronic species but Si

  • Q : Molecular weight of substance The

    The boiling point of a solution of 0.11 gm of a substance in 15 gm of ether was found to be 0.1oC higher than that of the pure ether. The molecular weight of the substance will be (Kb = 2.16)       (a) 148 &nbs

  • Q : Relative lowering in vapour pressure of

    Give me answer of this question. "Relative lowering in vapour pressure of solution containing non-volatile solute is directly proportional to mole fraction of solute". Above statement is: (a) Henry law (b) Dulong and Petit law (c) Raoult's law (d) Le-Chatelier's pri

  • Q : Molarity of Sulfuric acid Choose the

    Choose the right answer from following. What is the molarity of H2SO4 solution, that has a density 1.84 gm/cc at 35c and contains solute 98% by weight: (a) 4.18 M (b) 8.14 M (c)18.4 M (d)18 M

  • Q : Describe the function of the

    Briefly describe the function of the monosaccharide?

  • Q : What do you mean by the term enzymes

    What do you mean by the term enzymes? Briefly illustrate it.

  • Q : Problem on partial pressure i) Show

    i) Show that the equilibrium constant Kp for the reaction CaCo3(s) ↔ CaO(s) +CO2(g)is about unity (i.e. = 1.0) at 895 °C.ii) If two grams of calcium carbonate are pl

  • Q : Utilization of glacial acetic acid What

    What is the utilization of glacial acetic acid? Briefly describe the uses.

  • Q : How haloalkanes are prepared from

    This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloa