--%>

Explain the polymers and its types.

Polymers are the chief products of modern chemical industry which form the backbone of present society. Daily life without the discovery and varied applications of polymers would not have been easier and colourful. The materials made of polymers find multifarious uses and applications in all walks of our life. They have influenced our day to day life to such an extent that it is impossible to get through the day without using a material based on polymers. Common examples of these include plastic dishes, cups, non-stick. Pans, automobile tyres and seat covers, plastic bags, rain coats, plastic pipes and fitting radio, TV and computer cabinets; wide range of synthetic fibres for clothing, synthetic glues, flooring materials and materials for biomedical and surgical operations. 

Word polymer means "many parts" (Greek: poly means many and merors means parts). A polymer is a compound of high molecular mass created by the mixture of large number of small molecules. The small molecules which comprise the repeating units in a polymer are known as monomer units. The process by which the monomers are transformed into polymer is called polymerization. For example, polyethylene is a polymer which is obtained by the polymerization of ethylene. The ethylene molecules are referred to as monomer units.
1000_Polymers.png 
As polymers are single and giant molecules, i.e. big size molecules, they are also known as macromolecules.

Homopolymers and copolymers

Polymers are divided into two broad categories depending upon the nature of the repeating structural units. These are homopolymers and co-polymers.

The polymer formed from one kind of monomer is called homopolymers while polymer formed from more than one kind of monomer units is called copolymer or mixed polymer. For example, polyethylene is an example of homopolymers whereas Buna-S rubber which is formed from 1, 3-butadiene (CH2 = CH - CH = CH2) and styrene (C6H5CH = CH2) is an example of copolymer. 

 

 

 

   Related Questions in Chemistry

  • Q : Amines why o-toluidine is a weaker base

    why o-toluidine is a weaker base than aniline?

  • Q : Question related to molarity Help me to

    Help me to go through this problem. Molarity of a solution containing 1g NaOH in 250ml of solution: (a) 0.1M (b) 1M (c) 0.01M (d) 0.001M

  • Q : Gibberella fusarium in bioremediation

    in bioremediation gibberella fusarium is used to break down____?

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : Explain structure basicity of amines.

    Basic character of amines is related to their structural arrangement. Basic strength of amines depends on the relative ease of formation of the corresponding cation by accepting a proton from the acid. Greater the stability of cation is, more is basic strength of amine.Alkyl a

  • Q : Solutions The relative lowering of

    The relative lowering of vapour pressure of 0.2 molal solution in which solvent is benzene

  • Q : Relative lowering of the vapour pressure

    Choose the right answer from following.The relative lowering of the vapour pressure is equal to the ratio between the number of: (a) Solute moleules and solvent molecules (b) Solute molecules and the total molecules in the solution (c) Solvent molecules and the tota

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS

  • Q : Acid Solutions Choose the right answer

    Choose the right answer from following. Volume of water needed to mix with 10 ml 10N NHO3 to get 0.1 N HNO3: (a) 1000 ml (b) 990 ml (c) 1010 ml (d) 10 ml

  • Q : Why aryl halides are less reactive?

    Aryl halides are much less reactive towards nucleophilic substitution reactions than haloalkanes. The less reactivity of aryl halides can be described