Explain the polymers and its types.

Polymers are the chief products of modern chemical industry which form the backbone of present society. Daily life without the discovery and varied applications of polymers would not have been easier and colourful. The materials made of polymers find multifarious uses and applications in all walks of our life. They have influenced our day to day life to such an extent that it is impossible to get through the day without using a material based on polymers. Common examples of these include plastic dishes, cups, non-stick. Pans, automobile tyres and seat covers, plastic bags, rain coats, plastic pipes and fitting radio, TV and computer cabinets; wide range of synthetic fibres for clothing, synthetic glues, flooring materials and materials for biomedical and surgical operations. 

Word polymer means "many parts" (Greek: poly means many and merors means parts). A polymer is a compound of high molecular mass created by the mixture of large number of small molecules. The small molecules which comprise the repeating units in a polymer are known as monomer units. The process by which the monomers are transformed into polymer is called polymerization. For example, polyethylene is a polymer which is obtained by the polymerization of ethylene. The ethylene molecules are referred to as monomer units.
1000_Polymers.png 
As polymers are single and giant molecules, i.e. big size molecules, they are also known as macromolecules.

Homopolymers and copolymers

Polymers are divided into two broad categories depending upon the nature of the repeating structural units. These are homopolymers and co-polymers.

The polymer formed from one kind of monomer is called homopolymers while polymer formed from more than one kind of monomer units is called copolymer or mixed polymer. For example, polyethylene is an example of homopolymers whereas Buna-S rubber which is formed from 1, 3-butadiene (CH2 = CH - CH = CH2) and styrene (C6H5CH = CH2) is an example of copolymer. 

 

 

 

   Related Questions in Chemistry

  • Q : What are electromotive force in

    The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS

  • Q : Negative deviation Which one of the

    Which one of the following non-ideal solutions shows the negative deviation: (a) CH3COCH3 + CS2   (b) C6H6 + CH3COCH3   (c) CCl4 + CHCl3  

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Normality of solution containing

    Can someone please help me in getting through this problem. Determine the normality of a solution having 4.9 gm H3PO4 dissolved in 500 ml water: (a) 0.3  (b) 1.0  (c) 3.0   (d) 0.1

  • Q : Problem based on molecular weight

    Select the right answer of the question. Molecular weight of urea is 60. A solution of urea containing 6g urea in one litre is : (a)1 molar (b)1.5 molar (c) 0.1 molar (d) 0.01 molar

  • Q : Problem on mole fraction of glucose

    Provide solution of this question. While 1.80gm glucose dissolve in 90 of H2O , the mole fraction of glucose is: (a) 0.00399 (b) 0.00199 (c) 0.0199 (d) 0.998

  • Q : Problem on equilibrium composition The

    The catalytic dehydrogenation of 1-butene to 1,3-butadiene, C4H8(g) = C4H6(g)+H2(g) is carried out at 900 K and 1 atm.

    Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

©TutorsGlobe All rights reserved 2022-2023.