--%>

What are different mechanisms for nucleophilic substitution?

Nucleophilic substitution reactions in halides containing  - X bond may take place through either of the two different mechanisms,SN1 and SN2.

    
SN1 Mechanism (unimolecular Nucleophilic Substitution)

In this type, the rate of reaction dependent only on the concentration of alkyl halide, i.e.

Rate = k [RX]

The tertiary alkyl halides react by SN1 mechanism via formation of carbocations as intermediates as given below:

Step I: in the first step the alkyl halide slowly dissociates into halide and carbocation.

1475_nucleophillic.png 

This step is the slowest and reversible. It involves the cleavage of C-Br bond for which the energy is obtained through salvation of halide ion with the proton of protic solvent. Since the rate of reaction depends upon the slowest step, the rate of reaction depends only on the concentration of alkyl halide and not on the concentration of nucleophile.

Step IInd: in the second step, carbocation at once combines with the nucleophile to form the final substituted product.

2268_nucleophillic1.png 

The order of reactivity of a variety of alkyl halides from SN1 mechanism is as below:

The 3+ alkyl halides are most reactive because the intermediate carbocation formed in their case is the most stable. The more stable intermediate is formed at faster rate.
    
SN2 Mechanism (Bimolecular Nucleophilic Substitution)

In this type of reaction is dependent on the concentration of alkyl halide as well as nucleophile, i.e. 

Rate = k [RX] [Z-]

In this mechanism the incoming nucleophile interacts with alkyl halide causing the carbon-halide bond to break while forming a new carbon nucleophile bond. These two processes occurs at the same time in a single step and no intermediate is formed. As the reaction progresses and the bond between the nucleophile and the carbon atom starts forming and the bond between carbon atom and leaving group starts breaking. Finally, the product formed and the leaving group goes away.

In the transition state, the carbon atom is simultaneously bonded to incoming nucleophile and the leaving group. Such structures formed are unstable and cannot be isolated. This is due to the carbon atom in the transition state is at the same time bonded to five atoms and consequently is unstable.
    
The order of reactivity can be explained in terms of stability of transition state. Bulky alkyl groups attached to the carbon carrying halogen make the transition state unstable due to crowding (steric hindrance and decrease the reactivity of the alkyl halide through SN2mechanism. In 3° alkyl halide three alkyl groups are attached to the carbon carrying halogen. Therefore, transition state in this case has maximum energy and hence the reactivity is least. The 2° alkyl halides with two alkyl groups are most reactive whereas 1° alkyl halide with one alkyl group is most reactive.
    
Starting with an optically active alkyl halide, the reaction through SN2 mechanism results in complete inversion of configuration as it involves attack of nucleophile from backside. For example, when (-) -2-bromoethane is allowed to react with sodium hydroxide, (+)-2-octanol is formed. In (+)-2-octanol the position of -OH group is opposite to what bromide had occupied in (-)-2-bromooctane

   Related Questions in Chemistry

  • Q : Moles of HCl present in .70 L of a .33

    Detail the moles of HCl which are present in .70 L of a .33 M HCl solution?

  • Q : How to establish nomenclature for

    In the common chemistry terminologies, aliphatic halogen derivatives are named as alkyl halides. The words, n-, sec-, tert-, iso-, neo-, and amyl are

  • Q : Reaction of calcium carbonate Give me

    Give me answer of this question. What is the volume of 0.1NHcl required to react completely with 1.0g of pure calcium carbonate : (Ca= 40, C= 12 and o = 16 ) (a)150cm3 (b)250cm3 (c)200cm3 (d)100cm3

    Q : Explosions produce carbon dioxide

    Illustrate all the explosions produce carbon dioxide?

  • Q : Problem on molecular weight of solid

    The vapor pressure of pure benzene at a certain temperature is 200 mm Hg. At the same temperature the vapor pressure of a solution containing 2g of non-volatile non-electrolyte solid in 78g of benzene is 195 mm Hg. What is the molecular weight of solid:

  • Q : Problem on bubble point The following

    The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery.

    Q : Coordination number of a cation The

    The coordination number of a cation engaging a tetrahedral hole is: (a) 6  (b) 8  (c) 12  (d) 4 Answer: (d) The co-ordination number of a cation occupying a tetrahedral hole is 4.

  • Q : Depression in the freezing point When

    When 0.01 mole of sugar is dissolved in 100g of a solvent, the depression in freezing point is 0.40o. When 0.03 mole of glucose is dissolved in 50g of the same solvent, depression in the freezing point will be:(a) 0.60o  (b) 0.80o

  • Q : Question 6 A student was analyzing an

    A student was analyzing an unknown containing only Group IV cations. When the unknown was treated with 3M (NH4)2CO3 solution, a white precipitate formed. Because the acetic acid bottle was empty, the student used 6M HCl to dissolve the precipitate. Following the procedure of this experiment, the stu

  • Q : Solubility of a gas The solubility of a

    The solubility of a gas in water depends on: (a) Nature of the gas (b) Temperature (c) Pressure of the gas (d) All of the above. Can someone help me in finding out the right answer.