--%>

What are different mechanisms for nucleophilic substitution?

Nucleophilic substitution reactions in halides containing  - X bond may take place through either of the two different mechanisms,SN1 and SN2.

    
SN1 Mechanism (unimolecular Nucleophilic Substitution)

In this type, the rate of reaction dependent only on the concentration of alkyl halide, i.e.

Rate = k [RX]

The tertiary alkyl halides react by SN1 mechanism via formation of carbocations as intermediates as given below:

Step I: in the first step the alkyl halide slowly dissociates into halide and carbocation.

1475_nucleophillic.png 

This step is the slowest and reversible. It involves the cleavage of C-Br bond for which the energy is obtained through salvation of halide ion with the proton of protic solvent. Since the rate of reaction depends upon the slowest step, the rate of reaction depends only on the concentration of alkyl halide and not on the concentration of nucleophile.

Step IInd: in the second step, carbocation at once combines with the nucleophile to form the final substituted product.

2268_nucleophillic1.png 

The order of reactivity of a variety of alkyl halides from SN1 mechanism is as below:

The 3+ alkyl halides are most reactive because the intermediate carbocation formed in their case is the most stable. The more stable intermediate is formed at faster rate.
    
SN2 Mechanism (Bimolecular Nucleophilic Substitution)

In this type of reaction is dependent on the concentration of alkyl halide as well as nucleophile, i.e. 

Rate = k [RX] [Z-]

In this mechanism the incoming nucleophile interacts with alkyl halide causing the carbon-halide bond to break while forming a new carbon nucleophile bond. These two processes occurs at the same time in a single step and no intermediate is formed. As the reaction progresses and the bond between the nucleophile and the carbon atom starts forming and the bond between carbon atom and leaving group starts breaking. Finally, the product formed and the leaving group goes away.

In the transition state, the carbon atom is simultaneously bonded to incoming nucleophile and the leaving group. Such structures formed are unstable and cannot be isolated. This is due to the carbon atom in the transition state is at the same time bonded to five atoms and consequently is unstable.
    
The order of reactivity can be explained in terms of stability of transition state. Bulky alkyl groups attached to the carbon carrying halogen make the transition state unstable due to crowding (steric hindrance and decrease the reactivity of the alkyl halide through SN2mechanism. In 3° alkyl halide three alkyl groups are attached to the carbon carrying halogen. Therefore, transition state in this case has maximum energy and hence the reactivity is least. The 2° alkyl halides with two alkyl groups are most reactive whereas 1° alkyl halide with one alkyl group is most reactive.
    
Starting with an optically active alkyl halide, the reaction through SN2 mechanism results in complete inversion of configuration as it involves attack of nucleophile from backside. For example, when (-) -2-bromoethane is allowed to react with sodium hydroxide, (+)-2-octanol is formed. In (+)-2-octanol the position of -OH group is opposite to what bromide had occupied in (-)-2-bromooctane

   Related Questions in Chemistry

  • Q : Normality of solution containing

    Can someone please help me in getting through this problem. Determine the normality of a solution having 4.9 gm H3PO4 dissolved in 500 ml water: (a) 0.3  (b) 1.0  (c) 3.0   (d) 0.1

  • Q : Problem based on molecular weight

    Select the right answer of the question. Molecular weight of urea is 60. A solution of urea containing 6g urea in one litre is : (a)1 molar (b)1.5 molar (c) 0.1 molar (d) 0.01 molar

  • Q : Normality of acetic acid Give me answer

    Give me answer of this question. The normality of 10% (weight/volume) acetic acid is: (a)1 N (b)10 N (c)1.7 N (d) 0.83 N

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : Question based on normality Provide

    Provide solution of this question. A 5 molar solution of H2SO4 is diluted from 1 litre to 10 litres. What is the normality of the solution : (a) 0.25 N (b) 1 N (c) 2 N (d) 7 N

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : Partial vapour pressure of volatile

    Choose the right answer from following. For a solution of volatile liquids the partial vapour pressure of each component in solution is directly proportional to: (a) Molarity (b) Mole fraction (c) Molality (d) Normality

  • Q : Solution and colligative properties

    what is molarity of a solution of hcl which contains 49% by weight of solute and whose specific gravity is 1.41

  • Q : Thermodynamics 1 Lab Report I already

    I already did Materials and Methods section. I uploaded it with the instructions. Also, make sure to see Concept Questions and Thinking Ahead in the instructions that I uploaded. deadline is tomorow at 8 am here is the link to download all instructions because I couldn't attach all of t

  • Q : Relative lowering in vapour pressure of

    Give me answer of this question. "Relative lowering in vapour pressure of solution containing non-volatile solute is directly proportional to mole fraction of solute". Above statement is: (a) Henry law (b) Dulong and Petit law (c) Raoult's law (d) Le-Chatelier's pri