--%>

What are different mechanisms for nucleophilic substitution?

Nucleophilic substitution reactions in halides containing  - X bond may take place through either of the two different mechanisms,SN1 and SN2.

    
SN1 Mechanism (unimolecular Nucleophilic Substitution)

In this type, the rate of reaction dependent only on the concentration of alkyl halide, i.e.

Rate = k [RX]

The tertiary alkyl halides react by SN1 mechanism via formation of carbocations as intermediates as given below:

Step I: in the first step the alkyl halide slowly dissociates into halide and carbocation.

1475_nucleophillic.png 

This step is the slowest and reversible. It involves the cleavage of C-Br bond for which the energy is obtained through salvation of halide ion with the proton of protic solvent. Since the rate of reaction depends upon the slowest step, the rate of reaction depends only on the concentration of alkyl halide and not on the concentration of nucleophile.

Step IInd: in the second step, carbocation at once combines with the nucleophile to form the final substituted product.

2268_nucleophillic1.png 

The order of reactivity of a variety of alkyl halides from SN1 mechanism is as below:

The 3+ alkyl halides are most reactive because the intermediate carbocation formed in their case is the most stable. The more stable intermediate is formed at faster rate.
    
SN2 Mechanism (Bimolecular Nucleophilic Substitution)

In this type of reaction is dependent on the concentration of alkyl halide as well as nucleophile, i.e. 

Rate = k [RX] [Z-]

In this mechanism the incoming nucleophile interacts with alkyl halide causing the carbon-halide bond to break while forming a new carbon nucleophile bond. These two processes occurs at the same time in a single step and no intermediate is formed. As the reaction progresses and the bond between the nucleophile and the carbon atom starts forming and the bond between carbon atom and leaving group starts breaking. Finally, the product formed and the leaving group goes away.

In the transition state, the carbon atom is simultaneously bonded to incoming nucleophile and the leaving group. Such structures formed are unstable and cannot be isolated. This is due to the carbon atom in the transition state is at the same time bonded to five atoms and consequently is unstable.
    
The order of reactivity can be explained in terms of stability of transition state. Bulky alkyl groups attached to the carbon carrying halogen make the transition state unstable due to crowding (steric hindrance and decrease the reactivity of the alkyl halide through SN2mechanism. In 3° alkyl halide three alkyl groups are attached to the carbon carrying halogen. Therefore, transition state in this case has maximum energy and hence the reactivity is least. The 2° alkyl halides with two alkyl groups are most reactive whereas 1° alkyl halide with one alkyl group is most reactive.
    
Starting with an optically active alkyl halide, the reaction through SN2 mechanism results in complete inversion of configuration as it involves attack of nucleophile from backside. For example, when (-) -2-bromoethane is allowed to react with sodium hydroxide, (+)-2-octanol is formed. In (+)-2-octanol the position of -OH group is opposite to what bromide had occupied in (-)-2-bromooctane

   Related Questions in Chemistry

  • Q : Ions in solution The accuracy of your

    The accuracy of your written English will be taken into account in marking. 1.    (a)   Identify the spectator ions in the following equation                    &nb

  • Q : What is solvent dielectric effect?

    Ionic dissociation depends on the dielectric constant of the solvent.The Arrhenius that ions are in aqueous solutions in equilibrium with parent molecular species allows many of the properties of ionic solutions to be understood. But difficulties began to

  • Q : Molarity of pure water Choose the right

    Choose the right answer from following. The molarity of pure water is: (a) 55.6 (b) 5.56 (c)100 (d)18

  • Q : Inorganic Chemistry Inorganic

    Inorganic Chemistry:In the year 1869, Russian Chemist Dmitry Mendeleyev forms the periodic table of the element. Since Newlands did before him in the year 1863, Mendeleyev categorizes the el

  • Q : Effect on vapour pressure of dissolving

    Give me answer of this question. When a substance is dissolved in a solvent the vapour pressure of the solvent is decreased. This results in: (a) An increase in the b.p. of the solution (b) A decrease in the b.p. of the solvent (c) The solution having a higher fr

  • Q : Question of vapour pressure Choose the

    Choose the right answer from following. Vapour pressure of a solution is: (a) Directly proportional to the mole fraction of the solvent (b) Inversely proportional to the mole fraction of the solute (c) Inversely proportional to the mole fraction of the solvent (d

  • Q : What are homogenous catalyst? Give few

    When a catalyst mixes homogeneously with the reactants and forms a single phase, the catalyst is said to be homogeneous and this type of catalysis is called homogeneous catalysis. Some more examples of homogeneous catalysis are:    SO2

  • Q : Preparation of normal solution Give me

    Give me answer of this question. What weight of ferrous ammonium sulphate is requiored to prepare 100 ml of 0.1 normal solution (mol. wt. 392): (a) 39.2 gm (b) 3.92 gm (c)1.96 gm (d)19.6 gm

  • Q : Functions of centrioles Describe

    Describe briefly the functions of centrioles?

  • Q : Hydrocarbons list and identify

    list and identify differences between the major classes of hydrocarbons