--%>

Non-ideal Gases Fugacity

The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.

Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction (∂G/∂P) t = V is used with the ideal gas relation PV = RT, or V = RT/P, to obtain G = G° = R in P. it was this equation that led to the familiar equilibrium constant expression. If the ideal gas relation PV = RT is not satisfactory, some other quality equations, that of van der Waals, for example, could be used to express the pressure dependence of V. if that were done, the integration of (∂G/∂P)T = V would produce an awkward expression for the equilibrium constant. Thus a route that preserves the simple form of the equilibrium constant expression is preferable.

A satisfactory procedure is the introduction of a function called the fugacy ƒ.  This procedure insists on the free energy equation having the convenient form of the nonideal complications are hidden in the fugacy term. A number of manipulations are necessary; we begin with the thermodynamic equation for mol 1 of gas at constant temperature.

G2 - G1 = V dP

The quantity RT/P can be added to and subtracted from the integrand to give

G2 - G1 = [RT/P + (V - RT/P0] dP

= RT/P dP = (V - RT/P dP

= RTY in P2/P1 + (V - RT/P) dP


Thus the ratio f/P can be calculated at any temperature for which viral coefficient data are available and for any pressure in the range in which these data are applicable. If the real gas behavior is expressed by any other equation of state, the integration can be carried out graphically or with the help of a computer.

Fugacity and the law of corresponding states: for gases for which molar volume measurements have not been made and an equation of state is not available, the law of corresponding states can be used to estimate the fugacities at various reduced variables PR, VR and TR all gases follow the same imperfection and therefore the same nonideality. Furthermore, the variation of the compressibility factor Z with the reduced pressure has been represented for various values TR. These data are all that is necessary for the integration values of:

Z = PV/RT

From which we obtain:

V = RT/P × Z

With this relation eq. can be written as:

RT In ƒ/P = ∫PO (RT/P × Z - RT/P) dP = RT  ∫PO (Z - 1) dP/P

Or, In ƒ/P = 
 ∫PO (Z - 1) dP/P =  ∫PO (Z - 1) d PR/PR

The data of Z as a function of PR for a given value of TR then allow graphical integrations to be performed to give curves.

Example: estimate the fugacity of methane at 200 bar and 25°C, but use the correlation that is based on the law of corresponding states. The critical data give = 46.3 bar and T = 190.6 K for methane.

Solution: at 200 bar the reduced pressure is 200 bar/46.3 bar = 4.32. At 25°C the reduced temperature is 298.15/190.6 K = 1.56. From the value of ƒ/P is estimated at about 0.8, given ƒ = 160 bar.

   Related Questions in Chemistry

  • Q : Molarity in Nacl The molarity of 0.006

    The molarity of 0.006 mole of NaCl in 100 solutions will be: (i) 0.6 (ii) 0.06 (iii) 0.006 (iv) 0.066 (v) None of theseChoose the right answer from above.Answer: The right answer is (ii) M = n/ v(

  • Q : Dipole attractions-London dispersion

    Describe how dipole attractions, London dispersion forces and the hydrogen bonding identical?

  • Q : Procedure for separating the components

    Briefly describe the procedure for separating the components of the gun-powder?

  • Q : Question relatede to calculate molarity

    Select the right answer of the question. What is molarity of a solution of HCl that contains 49% by weight of solute and whose specific gravity is 1.41 : (a) 15.25 (b) 16.75 (c) 18.92 (d) 20.08

  • Q : Soluation of Ideal Gas Law problems

    Explain the method, how do you solve Ideal Gas Law problems?

  • Q : Question based on vapour pressure While

    While a substance is dissolved in a solvent, the vapour pressure of the solvent is decreased. This results in: (a) An increase in the boiling point of the solution (b) A decrease in the boiling point of solvent (c) The solution having a higher freezing point than

  • Q : Problem on molecular weight of solid

    The vapor pressure of pure benzene at a certain temperature is 200 mm Hg. At the same temperature the vapor pressure of a solution containing 2g of non-volatile non-electrolyte solid in 78g of benzene is 195 mm Hg. What is the molecular weight of solid:

  • Q : Donnan Membrane Equilibria The electric

    The electric charge acquired by macromolecules affects the equilibrium set up across a semipermeable membrane.Laboratory studies of macromolecule solutions as in osmotic pressure and dialysis studies confine the macromolecules to one compartment while allo

  • Q : Colligative property problem Which is

    Which is not a colligative property: (a) Refractive index (b) Lowering of vapour pressure (c) Depression of freezing point (d) Elevation of boiling point    

  • Q : Explain the process of adsorption of

    The extent of adsorption of a gas on a solid adsorbent is affected by the following factors: 1. Nature of the gas Since physical adsorption is non-specific in nature, every gas will get adsorbed on the