--%>

Non-ideal Gases Fugacity

The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.

Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction (∂G/∂P) t = V is used with the ideal gas relation PV = RT, or V = RT/P, to obtain G = G° = R in P. it was this equation that led to the familiar equilibrium constant expression. If the ideal gas relation PV = RT is not satisfactory, some other quality equations, that of van der Waals, for example, could be used to express the pressure dependence of V. if that were done, the integration of (∂G/∂P)T = V would produce an awkward expression for the equilibrium constant. Thus a route that preserves the simple form of the equilibrium constant expression is preferable.

A satisfactory procedure is the introduction of a function called the fugacy ƒ.  This procedure insists on the free energy equation having the convenient form of the nonideal complications are hidden in the fugacy term. A number of manipulations are necessary; we begin with the thermodynamic equation for mol 1 of gas at constant temperature.

G2 - G1 = V dP

The quantity RT/P can be added to and subtracted from the integrand to give

G2 - G1 = [RT/P + (V - RT/P0] dP

= RT/P dP = (V - RT/P dP

= RTY in P2/P1 + (V - RT/P) dP


Thus the ratio f/P can be calculated at any temperature for which viral coefficient data are available and for any pressure in the range in which these data are applicable. If the real gas behavior is expressed by any other equation of state, the integration can be carried out graphically or with the help of a computer.

Fugacity and the law of corresponding states: for gases for which molar volume measurements have not been made and an equation of state is not available, the law of corresponding states can be used to estimate the fugacities at various reduced variables PR, VR and TR all gases follow the same imperfection and therefore the same nonideality. Furthermore, the variation of the compressibility factor Z with the reduced pressure has been represented for various values TR. These data are all that is necessary for the integration values of:

Z = PV/RT

From which we obtain:

V = RT/P × Z

With this relation eq. can be written as:

RT In ƒ/P = ∫PO (RT/P × Z - RT/P) dP = RT  ∫PO (Z - 1) dP/P

Or, In ƒ/P = 
 ∫PO (Z - 1) dP/P =  ∫PO (Z - 1) d PR/PR

The data of Z as a function of PR for a given value of TR then allow graphical integrations to be performed to give curves.

Example: estimate the fugacity of methane at 200 bar and 25°C, but use the correlation that is based on the law of corresponding states. The critical data give = 46.3 bar and T = 190.6 K for methane.

Solution: at 200 bar the reduced pressure is 200 bar/46.3 bar = 4.32. At 25°C the reduced temperature is 298.15/190.6 K = 1.56. From the value of ƒ/P is estimated at about 0.8, given ƒ = 160 bar.

   Related Questions in Chemistry

  • Q : Ionization Potential Second ionization

    Second ionization potential of Li, Be and B is in the order (a)Li>Be>B (b)Li>B>Be (c)Be>Li>B (d)B>Be>Li

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1

  • Q : Negative deviation Which one of the

    Which one of the following non-ideal solutions shows the negative deviation: (a) CH3COCH3 + CS2   (b) C6H6 + CH3COCH3   (c) CCl4 + CHCl3  

  • Q : Carnot cycle show how a mathematical

    show how a mathematical definition of entropy can be obtauined from a consideration of carnot cycle?

  • Q : Inorganic Chemistry Inorganic

    Inorganic Chemistry:In the year 1869, Russian Chemist Dmitry Mendeleyev forms the periodic table of the element. Since Newlands did before him in the year 1863, Mendeleyev categorizes the el

  • Q : Vitamines 7 enzyme cofactor what is the

    what is the relationship between vitamins and enzyme cofactors

  • Q : Rotational energy and entropy due to

    The entropy due to the rotational motion of the molecules of a gas can be calculated. Linear molecules: as was pointed out, any rotating molecule has a set of allowed rotational energies. For a linear molecule the

  • Q : Modern periodic table and Mendeleevs

    Differentiate between the modern periodic table and Mendeleevs table?

  • Q : Molecular mass from Raoults law Provide

    Provide solution of this question. Determination of correct molecular mass from Raoult's law is applicable to: (a) An electrolyte in solution (b) A non-electrolyte in a dilute solution (c) A non-electrolyte in a concentrated solution (d) An electrolyte in a liquid so

  • Q : What are electromotive force in

    The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the