--%>

How to calculate solutions molar conductance?

The contribution of an electrolyte, or an ion electrolyte, is reported as the molar of a conductance.


The definition of the molar conductance is based on the following conductivity cell in which the electrodes are 1 m apart and of sufficient area that the cell holds the amount of solution that contains 1 mol of solute. The conductivity of such a cell is the mole conductance.

A of solution of concentration c, expressed in moles per litre, has a volume in litres per mole of 1/c or a volume in cubic meters of (10-3 m3 l-1)/c. a cell with this volume and electrodes separated by 1 m would be equilivalent to (10-3 m3 l-1)/c unit cells placed alongside each other. The conductivity of such a cell, which is the molar conductance, is given by:

A = 10-3 m3 l-1/c × k

This relation defines the molar conductance in terms of the specific conductance. The concept of the cell holding solution of volume (10-3 m3 l-1)/c is introduced only to suggest the definition of conductance and in practice one uses any convenient conductance cell, measures R, and calculate L = 1/R. with this datum one obtains k= (cell constant) L and finally A.

Many precise measurements of molar conductance were made by Friedrich Kohlausch and his coworkers between about 1860 and 1880. 

On the basis of such data and in the absence of any satisfactory theory about the nature of conduction in these solutions, some variable empirical relations were concluded. It was recognized that for some electrolytes plotting the molar conductance of an electrolyte at a fixed temperature against the square root of the concentration led to the plots which confirmed very closely at the lower concentrations to straight lines. Such plots for new electrolytes are lead to essentially linear plots are now classed as strong electrolytes, and those which seem to approach the dilute solution limit almost tangentially are classed as weak electrolytes.

An important relation can be deduced from extrapolations of the strong electrolyte data to infinite dilution to give what are known as limiting molar of the independent migration of ions. The law is more easily stated and understandable if some later ideas are anticipated and the conductance of an electrolyte at infinite dilution is treated as being made of contributions from the individual ions of the electrolyte. Let v+ be the number of positive ions and v - the number of negative ions implied by the formula of the electrolyte. 

Molar conductances ? in Ω-1 m2 mol-1 in aqueous solution at 25° C (values for c = 0obtained by extrapolation or, for HAc and NH4OH, by a combination of extrapolated values):

c NaCl KCl HCl NaAc CuSO4 H2SO4 HAc NH4OH
0.000 (0.012645) 0.014986 0.042616 0.00910 0.02661 0.08592 0.03907 0.002714
0.0005 (0.012450) 0.014781 0.042274 0.00892 0.02304 0.08262 0.00677 0.0047
0.001 0.012374 0.014695 0.042136 0.00885 0.01666 0.07990 0.00492 0.0034
0.010 0.011851 0.014127 0.041200 0.008376 0.01010 0.06728 0.00163 0.00113
0.100 0.010674 0.012896 0.039132 0.007280 0.00586 0.05016   0.00036
1.00   0.01119 0.03328 0.00491        

   Related Questions in Chemistry

  • Q : Problem on relative humidity Relative

    Relative humidity is the ratio of the partial pressure of water in air to the partial pressure of water in air saturated with water at the same temperature, stated as a percentage: Relative  =

    Q : Advantages of doing your own chemistry

    What are the advantages of doing your own chemistry assignments? State your comment?

  • Q : Concentration of Sodium chloride

    Provide solution of this question. If 25 ml of 0.25 M NaCl solution is diluted with water to a volume of 500ml the new concentration of the solution is : (a) 0.167 M (b) 0.0125 M (c) 0.833 M (d) 0.0167 M

  • Q : How haloalkanes are prepared from

    Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.    From alkanesWhen alkanes are treated with halogens, chlo

  • Q : Alkaline medium The amount of KMnO 4

    The amount of KMnO4 required to prepare 100 ml of 0.1N solution in alkaline medium is: (a) 1.58 gm (b) 3.16 gm (c) 0.52 gm (d) 0.31 gmAnswer: (a) In alkaline medium KMnO4 act as ox

  • Q : What is depression in freezing point?

    Freezing point of a substance is the temperature at which solid and liquid phases of the substance coexist. It is defined as the temperature at which its solid and liquid phases have the same vapour pressure. The freezing point o

  • Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : Explain the process of adsorption of

    The extent of adsorption of a gas on a solid adsorbent is affected by the following factors: 1. Nature of the gas Since physical adsorption is non-specific in nature, every gas will get adsorbed on the

  • Q : What is covalent radii? Explain its

    Average covalent radii can be assigned on the basis of molecular structures. The accumulation of structural data by spectroscopic studies and both electron and x-ray diffraction studies allows one to investigate the possibili

  • Q : Influence of temperature Can someone

    Can someone please help me in getting through this problem. With increase of temperature, which of the following changes: (i) Molality (ii) Weight fraction of solute (iii) Fraction of solute present in water (iv) Mole fraction.