--%>

How to calculate solutions molar conductance?

The contribution of an electrolyte, or an ion electrolyte, is reported as the molar of a conductance.


The definition of the molar conductance is based on the following conductivity cell in which the electrodes are 1 m apart and of sufficient area that the cell holds the amount of solution that contains 1 mol of solute. The conductivity of such a cell is the mole conductance.

A of solution of concentration c, expressed in moles per litre, has a volume in litres per mole of 1/c or a volume in cubic meters of (10-3 m3 l-1)/c. a cell with this volume and electrodes separated by 1 m would be equilivalent to (10-3 m3 l-1)/c unit cells placed alongside each other. The conductivity of such a cell, which is the molar conductance, is given by:

A = 10-3 m3 l-1/c × k

This relation defines the molar conductance in terms of the specific conductance. The concept of the cell holding solution of volume (10-3 m3 l-1)/c is introduced only to suggest the definition of conductance and in practice one uses any convenient conductance cell, measures R, and calculate L = 1/R. with this datum one obtains k= (cell constant) L and finally A.

Many precise measurements of molar conductance were made by Friedrich Kohlausch and his coworkers between about 1860 and 1880. 

On the basis of such data and in the absence of any satisfactory theory about the nature of conduction in these solutions, some variable empirical relations were concluded. It was recognized that for some electrolytes plotting the molar conductance of an electrolyte at a fixed temperature against the square root of the concentration led to the plots which confirmed very closely at the lower concentrations to straight lines. Such plots for new electrolytes are lead to essentially linear plots are now classed as strong electrolytes, and those which seem to approach the dilute solution limit almost tangentially are classed as weak electrolytes.

An important relation can be deduced from extrapolations of the strong electrolyte data to infinite dilution to give what are known as limiting molar of the independent migration of ions. The law is more easily stated and understandable if some later ideas are anticipated and the conductance of an electrolyte at infinite dilution is treated as being made of contributions from the individual ions of the electrolyte. Let v+ be the number of positive ions and v - the number of negative ions implied by the formula of the electrolyte. 

Molar conductances ? in Ω-1 m2 mol-1 in aqueous solution at 25° C (values for c = 0obtained by extrapolation or, for HAc and NH4OH, by a combination of extrapolated values):

c NaCl KCl HCl NaAc CuSO4 H2SO4 HAc NH4OH
0.000 (0.012645) 0.014986 0.042616 0.00910 0.02661 0.08592 0.03907 0.002714
0.0005 (0.012450) 0.014781 0.042274 0.00892 0.02304 0.08262 0.00677 0.0047
0.001 0.012374 0.014695 0.042136 0.00885 0.01666 0.07990 0.00492 0.0034
0.010 0.011851 0.014127 0.041200 0.008376 0.01010 0.06728 0.00163 0.00113
0.100 0.010674 0.012896 0.039132 0.007280 0.00586 0.05016   0.00036
1.00   0.01119 0.03328 0.00491        

   Related Questions in Chemistry

  • Q : Liquid surfaces The surface between a

    The surface between a liquid and a vapour distinguishes these fluids. The surface tension of liquids can be looked upon as that the property which draws a liquid together and forms a liquid vapour interface, therefore, distinguishing liquids from gases.<

  • Q : Why medications include the hcl Why do

    Why do various medications include the hcl? Describe briefly?

  • Q : Calculating value of molar solution

    Choose the right answer from following. An X molal solution of a compound in benzene has mole fraction of solute equal to 0.2. The value of X is: (a)14 (b) 3.2 (c) 4 (d) 2

  • Q : Acid value definition The acid value

    The acid value definition is the number milligrams of KOH needed to neutralize the acid present in one gram oil and fats however why not employ NaOH for the neutralization?

  • Q : How haloalkanes are prepared from

    This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloa

  • Q : Molarity what is the molarity of the

    what is the molarity of the solution prepared by dissolving 75.5 g of pure KOH in 540 ml of solution

  • Q : Organic structure of cetearyl alcohol

    Can we demonstration the organic structure of cetearyl alcohol and state me what organic family it is?

  • Q : Molar mass what is the equation for

    what is the equation for calculating molar mass of non volatile solute

  • Q : Problem associated to vapour pressure

    Provide solution of this question. 60 gm of Urea (Mol. wt 60) was dissolved in 9.9 moles, of water. If the vapour pressure of pure water is P0 , the vapour pressure of solution is:(a) 0.10P0 (b) 1.10P0 (c) 0.90P0 (d) 0.99P0

  • Q : Problem on normality Help me to solve

    Help me to solve this problem. 0.5 M of H2AO4 is diluted from 1 lire to 10 litre, normality of resulting solution is : (a)1 N (b) 0.1 N (c)10 N (d)11 N