--%>

How to calculate solutions molar conductance?

The contribution of an electrolyte, or an ion electrolyte, is reported as the molar of a conductance.


The definition of the molar conductance is based on the following conductivity cell in which the electrodes are 1 m apart and of sufficient area that the cell holds the amount of solution that contains 1 mol of solute. The conductivity of such a cell is the mole conductance.

A of solution of concentration c, expressed in moles per litre, has a volume in litres per mole of 1/c or a volume in cubic meters of (10-3 m3 l-1)/c. a cell with this volume and electrodes separated by 1 m would be equilivalent to (10-3 m3 l-1)/c unit cells placed alongside each other. The conductivity of such a cell, which is the molar conductance, is given by:

A = 10-3 m3 l-1/c × k

This relation defines the molar conductance in terms of the specific conductance. The concept of the cell holding solution of volume (10-3 m3 l-1)/c is introduced only to suggest the definition of conductance and in practice one uses any convenient conductance cell, measures R, and calculate L = 1/R. with this datum one obtains k= (cell constant) L and finally A.

Many precise measurements of molar conductance were made by Friedrich Kohlausch and his coworkers between about 1860 and 1880. 

On the basis of such data and in the absence of any satisfactory theory about the nature of conduction in these solutions, some variable empirical relations were concluded. It was recognized that for some electrolytes plotting the molar conductance of an electrolyte at a fixed temperature against the square root of the concentration led to the plots which confirmed very closely at the lower concentrations to straight lines. Such plots for new electrolytes are lead to essentially linear plots are now classed as strong electrolytes, and those which seem to approach the dilute solution limit almost tangentially are classed as weak electrolytes.

An important relation can be deduced from extrapolations of the strong electrolyte data to infinite dilution to give what are known as limiting molar of the independent migration of ions. The law is more easily stated and understandable if some later ideas are anticipated and the conductance of an electrolyte at infinite dilution is treated as being made of contributions from the individual ions of the electrolyte. Let v+ be the number of positive ions and v - the number of negative ions implied by the formula of the electrolyte. 

Molar conductances ? in Ω-1 m2 mol-1 in aqueous solution at 25° C (values for c = 0obtained by extrapolation or, for HAc and NH4OH, by a combination of extrapolated values):

c NaCl KCl HCl NaAc CuSO4 H2SO4 HAc NH4OH
0.000 (0.012645) 0.014986 0.042616 0.00910 0.02661 0.08592 0.03907 0.002714
0.0005 (0.012450) 0.014781 0.042274 0.00892 0.02304 0.08262 0.00677 0.0047
0.001 0.012374 0.014695 0.042136 0.00885 0.01666 0.07990 0.00492 0.0034
0.010 0.011851 0.014127 0.041200 0.008376 0.01010 0.06728 0.00163 0.00113
0.100 0.010674 0.012896 0.039132 0.007280 0.00586 0.05016   0.00036
1.00   0.01119 0.03328 0.00491        

   Related Questions in Chemistry

  • Q : Adiabatic compression A lean natural

    A lean natural gas is available at 18oC and 65 bars and must be compressed for economical pipeline transportation. The gas is first adiabatically compressed to 200 bars and then isobarically (i.e. at constant pressure) cooled to 25°C. The gas, which is

  • Q : Gibberella fusarium in bioremediation

    in bioremediation gibberella fusarium is used to break down____?

  • Q : Question 6 A student was analyzing an

    A student was analyzing an unknown containing only Group IV cations. When the unknown was treated with 3M (NH4)2CO3 solution, a white precipitate formed. Because the acetic acid bottle was empty, the student used 6M HCl to dissolve the precipitate. Following the procedure of this experiment, the stu

  • Q : Define the term oxidizing agent Briefly

    Briefly define the term oxidizing agent?

  • Q : Effect of addition of mercuric iodide

    Give me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the:(a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change

  • Q : What are emulsions?Describe its

    Emulsions are colloidal solutions in which disperse phase as well as dispersion medium is both liquids. Emulsions can be broadly classified into two types: (i) Oil in water (O/W type) emulsions: in this type of emulsions, oil acts disperse phase and water acts

  • Q : Explain the molecular mass with respect

    During the formation of polymers, different macromolecules have different degree of polymerisation i.e. they have varied chain lengths. Thus, the molecular masses of the individual macromolecules in a particular sample of the polymer are different. Hence, an average value of the molecular mass is

  • Q : Mole fraction of Carbon dioxide Choose

    Choose the right answer from following. If we take 44g of CO2 and 14g of N2 what will be mole fraction of CO2 in the mixture: (a) 1/5 (b) 1/3 (c) 2/3 (d) 1/4

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Partial vapour pressure of volatile

    Choose the right answer from following. For a solution of volatile liquids the partial vapour pressure of each component in solution is directly proportional to: (a) Molarity (b) Mole fraction (c) Molality (d) Normality