--%>

Explain the preparation of phenols.

The methods used for the preparation of phenols are given below:
    
From aryl sulphonic acids

Aryl sulphonic acids on fusion with NaOH at 573 K followed by acidification yield phenols.

1616_Phenol preparation.png 

From aryl halides (Dow's process)

Phenol is obtained on a large scale by heating chlorobenzene with 10% NaOH solution at about 623 K and under a pressure of 300 atmospheres in the presence of copper catalyst.

1327_Phenol preparation1.png 

From diazonium salts


In the laboratory phenols are prepared hydrolysis of diazonium salts with water or dilute acids.

994_Phenol preparation2.png 
    
By decarboxylation of sodium salt of saclicyclic acid

Phenol can also be obtained by the decarboxylation of sodium salicyclate with soda lime (an equimolar mixture of NaOH and CaO).
                           
289_Phenol preparation3.png 
    
From Grignard's reagent


when oxygen is bubbled through the solution of phenylmagnesium bromide in ether, it forms an addition product which on acidification with dilute acid gives phenol.

1498_Phenol preparation4.png

   Related Questions in Chemistry

  • Q : Isotonic Solutions Which one of the

    Which one of the following pairs of solutions can we expect to be isotonic at the same temperature:(i) 0.1M Urea and 0.1M Nacl  (ii) 0.1M Urea and 0.2M Mgcl2  (iii) 0.1M Nacl and 0.1M Na2SO4  (iv) 0.1M Ca(NO3<

  • Q : Question based on vapour pressure While

    While a substance is dissolved in a solvent, the vapour pressure of the solvent is decreased. This results in: (a) An increase in the boiling point of the solution (b) A decrease in the boiling point of solvent (c) The solution having a higher freezing point than

  • Q : Organic structure of cetearyl alcohol

    Show the organic structure of cetearyl alcohol and state what the organic family is? Briefly state it.

  • Q : Relationship between free energy and

    The free energy of a gas depends on the pressure that confines the gas. The standard free energies of formation, like those allow predictions to be made of the possibility of a reaction at 25°C for each reagent at 

  • Q : Organic structure of cetearyl alcohol

    Can we demonstration the organic structure of cetearyl alcohol and state me what organic family it is?

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo

  • Q : F-centres If a electron is present in

    If a electron is present in place of anion in a crystal lattice, then it is termed as: (a) Frenkel defect  (b) Schottky defect  (c) Interstitial defects (d) F-centre Answer: (d) When electrons are trapped in anion vacancies, thes

  • Q : Mole fraction of water and ethanol Give

    Give me answer of this question. A solution contains 1 mole of water and 4 mole of ethanol. The mole fraction of water and ethanol will be: (a) 0.2 water + 0.8 ethanol (b) 0.4 water + 0.6 ethanol (c) 0.6 water + 0.8 ethanol (d) 0.8 water + 0.2 ethanol

  • Q : Dipole moment direction for the methanol

    Briefly describe the dipole moment direction for the methanol?

  • Q : Calculation of molecular weight Provide

    Provide solution of this question. In an experiment, 1 g of a non-volatile solute was dissolved in 100 g of acetone (mol. mass = 58) at 298K. The vapour pressure of the solution was found to be 192.5 mm Hg. The molecular weight of the solute is (vapour pressure of ace