Intensity and Flux:
Intensity and flux are two essential measures of energy flow. Intensity is energy flow in the particular direction through unit area per unit time per unit solid angle, where unit area is perpendicular to the given direction stated by solid angle. Flux is net energy flow through the unit area per unit time, summed over all directions, where unit area is fixed as being perpendicular to the direction in which net flow of radiation is proceeding. Therefore, flux is attained by summing intensity over all directions.
For the isotropic intensity, positive and negative contributions will cancel out reducing flux to zero. Quantitatively, flux F and the intensity I are associated by expression
F = O'IcosqdW
Here dW is element of solid angle, and q is the angle between the fixed direction stated by flux and variable direction stated by intensity.
Intensity is estimated per unit area perpendicular to line of sight. Flux is estimated per unit area perpendicular to fixed direction of net flow of energy.
Scientists are generally interested in monochromatic intensities and fluxes like intensity per unit frequency interval at frequency v. Such specific intensities and fluxes are signified by In and Fn respectively. Quantities I and In are associated by given integral:
I = O'Indn
By solving for intensity as function of direction and integrating, you get net flow of radiation (i.e. flux) proceeding from stellar atmosphere or gas cloud.
Luminosity L:
Luminosity L of the star is closely associated to flux F. Consider the spherical star of radius R. If flux estimated at surface is F, then luminosity L is provided by:
L = 4pR2F
Therefore, for point object at a distance d, luminosity is provided by L = 4pd2F
So that flux becomes F = L/4pd2
In case of the extended object, resolved in angle by telescope, intensity received from different parts of the body is known as surface brightness of object. If object has uniform surface brightness, then intensity is independent of distance.
Radiative Transfer Equation:
Consider the pencil of radiation of frequency n travelling in atmosphere. As radiation travels a distance ds, its specific intensity changes according to expression.
dIn = ends - knds
Where εv is emission coefficient, kv is absorption coefficient and Iv is specific intensity.
The optical depth tn along the direction r is stated by equation
dtn = -kndr Here r makes angle q with ds. Now, you can write
-kn = dtn/dr
Presence of projection factor cosq signifies that
dr = cosqds
Multiplying across by cosq, we get
cosq(dIn/dtn) = en(dr/dtn) + In Now it is easy to see that dr/dtn = -1/kn
Using equation we get
cosq(dIn/dtn) = -en/kn + In or m(dIn/dt) = In - en/kn
Where projection factor
m = cosq
Equation is basic equation of radiative transfer. It has with the given sign convention:
(i) In is positive outwards (towards the observer).
(ii) tn is positive inwards (starting from zero at surface nearest the observer).
(iii) s is positive inwards (staring from zero at surface nearest the observer).
Ratio of emission coefficient to absorption coefficient states source function Sn. Therefore, source function Sn is provided by:
Sn = en/kn
Here εv and kv are emission and absorption coefficients respectively.
Local Thermodynamic Equilibrium (LTE):
In stellar atmosphere, it is not possible to get total thermodynamic equilibrium. If there were complete thermodynamic equilibrium, temperature would be similar everywhere with no temperature gradient to drive the outward flow of radiation. Further, if temperature were similar everywhere, then radiation field would be isotropic so that positive contributions and negative contributions would negate, resulting in zero flux. Undoubtedly, a total thermodynamic equilibrium can't take place in stellar atmosphere. Though, an adequately small region of stellar atmosphere may achieve roughly the same temperature. In this situation, affected region may be characterized by single local temperature. Such a small region is said to be in local thermodynamic equilibrium (LTE). LTE approximation really simplifies solution of equation of radiative transfer. For example, when LTE reigns, ratio en/kn relies only on temperature T, and source function Sn is simply Planck function Bn(T).
Planck's law can also be written in terms of wavelength l . To do this, we need that
Bndn = -Bldl or dn/dl = -Bl/Bn
Negative sign points out that wavelength decreases with increasing frequency.
Now, velocity of light is equivalent to the product of frequency and wavelength. Therefore, c = nl or
n = cl-1
Differentiating above expression, you find that dn/dl = -cl-2
After solving we get -Bl/Bn = -cl-2
Bl(T) = (2hc2/l5)(1/[ehc/(lkBT) - 1])
Application to Radio Waves:
The main use of radio Wave is to communicate information from one place to another through intervening media (that is, air, space, and non-conducting materials) without wires. Besides being utilized for transmitting sound and television signals, radio wave is utilized for transmission of data in coded form. In form of radar it is utilized also for sending out signals and picking up their reflections from objects in their path. Long-range radio signals allow astronauts to communicate with earth from moon and carry information from space probes as they travel to distant planets. For navigation of ships and aircraft radio range, radio compass (or direction finder), and radio time signals are extensively utilized. Radio signals sent from global positioning satellites can also be utilized by special receivers for exact indication of position. Digital radio, both satellite and terrestrial gives enhanced audio clarity and volume. Different remote-control devices, comprising rocket and artificial satellite operations systems and automatic valves in pipelines, are turned on by radio signals. Development of transistor and other microelectronic devices led to growth of portable transmitters and receivers. Cellular and cordless telephones are really radio transceivers. Several telephone calls regularly are relayed by radio rather than by wires; few are sent through radio to relay satellites. Few celestial bodies and interstellar gases emit comparatively strong radio waves which are seen with radio telescopes made up of very sensitive receivers and large directional antennas.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
www.tutorsglobe.com offers benzene & derivatives electrophilic substitution homework help, electrophilic substitution assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
tutorsglobe.com types of bio fertilizers assignment help-homework help by online role of bio fertilizers tutors
Sexual reproduction, above and beyond producing individuals, introduces variability in the offspring through combining traits of parents.
Theory and lecture notes of What to do when Deadlock is detected all along with the key concepts of what to do when deadlock is detected, deadlock detection. Tutorsglobe offers homework help, assignment help and tutor’s assistance on What to do when Deadlock is detected.
theory and lecture notes of solenoids and relays all along with the key concepts of magnetomotive force, magnetic field strength, permeability, valves and actuators. tutorsglobe offers homework help, assignment help and tutor’s assistance on theory of solenoids and relays
Composition of Crude and Natural gas tutorial all along with the key concepts of Hydrocarbon Compounds, paraffins, Cycloparaffins, Aromatic Compounds, Non-Hydrocarbon Compounds, Sulphur Compounds, Nitrogen Compounds, Oxygen Compounds, Properties of Crude Oil and Crude Oil Classification
www.tutorsglobe.com offers answering questions to economic problems associated with unemployment, theory of unemployment theory, economics assignment help-homework help by online tutors
just as the beam scans the target plate, the beam encounters dissimilar positive potentials on the side of the photo layer which faces the gun.
Theory and lecture notes of How to find Global Deadlocks all along with the key concepts of how to find global deadlocks, lock management pragmatics, local deadlock detector. Tutorsglobe offers homework help, assignment help and tutor’s assistance on How to find Global Deadlocks.
Reactions of Quinolines tutorial all along with the key concepts of Physical and Chemical Properties of Quinoline, Electrophilic Substitution, Nucleophilic Addition/Substitution of of Quinoline
tutorsglobe.com transmitting antenna types assignment help-homework help by online antenna tutors
www.tutorsglobe.com offers history homework help, history assignment help, online tutoring assistance, history solutions by online qualified and experienced history tutor's help.
www.tutorsglobe.com offers reactions of substituted benzenes homework help, reactions of substituted benzenes assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
Theory and lecture notes of Markov algorithm simulates Post machine all along with the key concepts of markov algorithm simulates post machine, homework help, assignment help, equivalence of tms, pms and markov algorithms tutors. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Markov algorithm simulates Post machine.
Relationship between Vegetation and Climate tutorial all along with the key concepts of Climate-vegetation Interaction in Sahara, Vegetation and Climate, Influence of Vegetation on Soil Type
1930877
Questions Asked
3689
Tutors
1448510
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!