Nuclear Models:
These are just meant to explain nuclear forces in nucleus of an atom. All that is known about nuclear force is that:
i. Short range of operation of order of ≈10cm
ii. Independent of charge i.e. exists equally between proton and neutron.
iii. Strong force which can overcome Coulomb force.
iv. It is repulsive force to certain extent to prevent collapse of nucleus.
Development of nuclear models is connected with two observations i.e. stability of nuclides with number of protons or neutrons equal to any one of magic number and relation between binding energy and mass number have been utilized as tests for validity of models. These are:
i. Liquid drop model
ii. Shell model or independent particle model
iii. Collective model.
Liquid Drop Model:
In liquid drop model, nuclei are considered to act like drops of incompressible liquid, i.e., like drops of very high density (density of order of 1014kg/m3). With this point of view and using concepts from classical physics (i.e. physics of continua), concepts like surface tension and surface energy, volume, and energy predictions are made about overall behaviour of nuclides. One of predictions, as mentioned above, is about relation between binding energy and mass number for nuclides.
Using liquid drop point of view, binding energy of nuclide would be consequential of five energies, volume energy (Ev), surface energy (Es), the energy due to asymmetry (i.e., deviation from a stable configuration), (Ea), the energy due to even-odd combination of nucleons in a nuclide, (Eδ) and coulomb energy (for protons), (Ec). With this, the total binding energy for a nuclide is
B.E = Ev + Es + Ea + Eδ + Ec
The relations for Ev, Es, Ea, Eδ, Ec are
Ev = CvA
Es = -CsA2/3
Ea = -(Ca[(A-Z) - Z]2)/A = -Ca(A - 2Z)2/A
Eδ = δ/2a= for even-even nuclides;
0 = for even-odd or odd-even nuclides;
-δ/2a = for odd-odd nuclides.
Ec = -4CcZ(Z - 1)/A1/3
Where Cv ≈ 14MeV
Cs ≈ 13.1MeV
Ca ≈ 19.4MeV
δ ≈ 270MeV
Cc ≈ 14MeV
Mass of nuclide is provided by:
Mn = (A - Z)mn + Zmp - B.E/c2
This relation is referred to as semi-empirical mass relation. Such predictions by liquid drop model and other predictions like predictions about fission of nuclides are in agreement with observation.
Shell Model:
In shell model, nucleons are treated as individual particles existing within potential created by nucleons of nuclide. Therefore shell model is also referred to as independent particle model. This is like treatment of electrons of atoms in atomic physics. In shell model of nuclear physics though, potential is because of both electromagnetic potential and nuclear potential. Therefore, potential that nucleon finds itself in nuclide is
V(r) = Vn(r) = -V0(1 + e-(r-R)/a) for a neutron
V(r) = Vn(r) + Ve(r) = -v0(1+e-(r-R)/a) + Ve(r) for a proton
V(r) = Ze2/4πε0Re[1 + 1/2(1-(r/Re)2)], for r < Re;
Ze2/4πε0r for r≥Re
Where V0 = 57 ± 27(A-2Z)/A MeV
(+) for protons and (-) for neutrons R = 1.25A4/3F, a constant for a nuclide a = 0.65F, a constant
With this relation for potential and assumption that for nucleons there is strong spin orbit coupling, solving Schrodinger's equation for nucleons in nuclides predicts fact that for values of Z or (A-Z = 2,8,20,28,50,82,126, and 184 there would be closed shells, that is stable nuclides in agreement with what is seen experimentally.
Collective Model:
The term collective model is utilized to involve any model which handles only with collective behavior of nucleons. In view of this, even liquid drop model can be looked on as collective model. Term is utilized with any model which takes collective effects in account.
Nuclide can have rotational energy or vibrational energy. In both cases, energies will be integer multiples of the phonon hvλ. With this, in overall modeling of structure of nuclei, first making certain suppositions about nature of nuclei, Hamiltonian for the certain model is derived. Then Hamiltonian is solved and wave function for nuclide or nucleon of interest determined. Then forecasts with wave function are compared with experimental observation. From this, model is estimated depending on degree of agreement and disagreement. Experimental observation which played the significant role in development of collective nuclear model is that of photonuclear reaction, happening of giant resonances in photonuclear reactions. For collective behaviour of nucleons, nuclides are considered to comprise of two fluids: Proton fluids and neutron fluids. Proton and neutron liquids could experience rotational and vibrational motion at their surfaces. In presence of electromagnetic fields there could be density fluctuations of density of proton Ρp(r,t), and density of neutron Ρn(r,t) and resulting dipole, quadruple, etc., resonances. This is because of fact that electromagnetic fields (and photons) react only with protons.
Additionally to the two collective behaviors, structure of nuclide can be affected by individual motion of individual nucleons comprising it. Putting the three factors together, Hamiltonian for nucleus is:
H^ = H^surface effects + H^giant resonance + H^interaction
Where H^s, Hamiltonian because of surface effects
H^gr, Hamiltonian because of giant resonance
Hamiltonian for nucleus is
H^s = H^s + H^gr + H^int & H^s = H^vib + H^rot
Thus H^ = H^vib + H^rot + H^gr + H^int
For individual particle (nucleon), Hamiltonian would be sum of Hamiltonian of collective motion, Hamiltonian of individual particle and Hamiltonian that considers interaction between individual motion and collective motion. Therefore for particle,
H^ = H^part + H^coll + H^int
In collective models, thus individual particles move in deformed shell potential and nucleus as a whole act like incompressible fluid with motions (vibratory and rotational) being influenced and affected by motion of individual particles inside nuclei.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
tutorsglobe.com dialysis assignment help-homework help by online renal failure tutors
X-Ray Spectroscopy tutorial all along with the key concepts of Sources of X- rays, X-ray Emission Spectrometers, X-ray Detector, Non dispersive X-ray Spectrometers, X-Ray absorption, Application of X-ray Fluorescence Analysis
Varicaps or Varactors are employed for electronic tuning in tuner circuits. Varactor is a unique silicon diode, the junction capacitance of which is employed for tuning.
tutorsglobe.com advantages of recombinant dna assignment help-homework help by online recombinant dna technology tutors
tutorsglobe.com types of epistasis assignment help-homework help by online epistasis tutors
Natural Radioactivity tutorial all along with the key concepts of Radioactivity: Natural and Artificial, Neutron-Proton Ratio and Nuclear Stability, Types of Radioactivity, Particles Emission and Position of Stable Region
Looking for a reliable and affordable Labor-Management Relations Assignment Help service online? Approach us and get benefitted!
tutorsglobe.com symbolization of nuclear reaction assignment help-homework help by online nuclear reaction tutors
Methodology Used In Job Costing - It is essential to recognize the costs related with the job and represent it in the form of job cost sheet for showing several types of costs.
General Characteristics of Bacteria tutorial all along with the key concepts of Size of Bacterial Cell, Shape and Arrangement of Bacterial Cell, Bacterial Structures, Structure External to the Cell Wall, Structures Internal to the Cell and Nutrition in bacteria
tutorsglobe.com symbols used in pedigree charts assignment help-homework help by online dna-segmenting or fragmenting tutors
First and Second Order Reactions tutorial all along with the key concepts of method of calculating First order rate constant, Half-Life of First Order Reactions, Rate Laws for Second Order Reactions and Half-Life of a Second Order Reaction
We are offering top-notch Accounting Standards Assignment Help service for students at nominal prices with 24/7 support.
for representation of the main winding diagram, draw solid vertical lines of equivalent length at equivalent distance equal to number of coils. these solid lines point out the top layer coil sides.
Damped Harmonic Motion tutorial all along with the key concepts of restoring force, damping force, instantaneous velocity of oscillator, Solutions of differential equation, Heavy Damping, Critical Damping, Logarithmic Decrement, Relaxation Time
1964149
Questions Asked
3689
Tutors
1475044
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!