Sedimentation and Velocity

The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment.

A particle of mass m at a distance x from center of rotation experiences a force given by 

ƒcentrif = m'xω2

Where w is the angular velocity in radiation per second m' is the distance effective mass of the solute particle, i.e. the actual mass corrected for the new effect of the solvent.

To express this buoyancy effect, we first recognize that v the specific volume of the solute, is the mass of 1 g of the solute. The volume of m g of solute is mv, and the mass of this volume of solvent is m of the solute is m - mvp = mj (1 - vp). We now can rewrite equation as:

Centrif = m (1 - vp) xω

Equating these two force expressions leads us to the constant drif velocity. A rearrangement of the equality:

M (1 - v) xω2 = 6∏r? dx/dt

Equating these two force expressions leads that collect the dynamic variables gives:

Dx/dt/xω2 = m (1 - vp)/6∏r?

The collection of dynamic terms on the left side of equation describes the results of sedimentation velocity experiments. This collection (dx/dt) xw2 can be looked on as the velocity with which the solute moves per unit centrifugal force. The sedimentation coefficient S is introduced as:

S = dx/dt/xω2

The experimentation results can therefore be tabulated as values of S. the value of S for many macromolecules is of the order of 10-13 has therefore been introduced, called a Svedberg, in honor of T. Svedberg, who did much of the early work with the ultracentrifuge.

Molar mass: s = dx/dt/xω2 = m )1 - vp)/ 6∏r?

Rearrangement and multiplication by Avogadro's number give:

M = Nm = 6∏r?NS/ 1- vp

Now the troublesome terms involving ? and r can be replaced by their effective values appear in the measurable values D of equation, to give the desired result:

M = RTS/ D (1 - vp)

Thus measurements of the substances of the sedimentation and diffusion coefficients and of the solvent and solute allow the deduction of the molar mass for a few macromolecules. The necessary data for such calculations for a few macromolecular materials are included.

A particular advantage of the sedimentation velocity technique is that a macromolecular solution containing two or more types of macromolecules is separated according to the molecular masses of the components. The type of sedimentation diagrams obtained for a system containing a number of macromolecular species.

Density gradient: better resolution can be obtained by allowing the sedimentation to occur in a density gradient solution, prepared, for example, by filling the centrifuge tube layer by layer with solutions of decreasing sucrose concentration. As the macromolecular substance or mixture of substances is centrifuged, it moves through a solvent with gradually increasing density. The result is more stable macromolecular zones and a better "spectrum" of the components. The technique is thus a modification of the sedimentation velocity method.

   Related Questions in Chemistry

  • Q : Cations Chromium(III) hydroxide is

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer

  • Q : Colligative property problem Which is

    Which is not a colligative property: (a) Refractive index (b) Lowering of vapour pressure (c) Depression of freezing point (d) Elevation of boiling point    

  • Q : Number of mlecules in methane Can

    Can someone please help me in getting through this problem. The total number of molecules in 16 gm of methane will be: (i) 3.1 x 1023 (ii) 6.02 x 1023 (iii) 16/6.02 x 1023 (iv) 16/3.0 x 1023

  • Q : What are homogenous catalyst? Give few

    When a catalyst mixes homogeneously with the reactants and forms a single phase, the catalyst is said to be homogeneous and this type of catalysis is called homogeneous catalysis. Some more examples of homogeneous catalysis are:    SO2

  • Q : Number of electrons in the benzene

    Describe the number of electrons in the benzene? Write a short note on it?

  • Q : Organic structure of cetearyl alcohol

    Show the organic structure of cetearyl alcohol and state what the organic family is? Briefly state it.

  • Q : Statement of Henry law Determine the

    Determine the correct regarding Henry’s law: (1) The gas is in contact with the liquid must behave as an ideal gas (2) There must not be any chemical interaction among the gas and liquid (3) The pressure applied must be high (4) All of these.

  • Q : P block why BiF3 is ionic whereas other

    why BiF3 is ionic whereas other trihalides are covalent in nature?

  • Q : Question based on maximum vapour

    Provide solution of this question. Which has maximum vapour pressure: (a) HI (b) HBr (c) HCl (d) HF

  • Q : Solution density of water is 1g/mL.The

    density of water is 1g/mL.The concentration of water in mol/litre is

©TutorsGlobe All rights reserved 2022-2023.