--%>

Infrared Adsorption

The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;

The molecular motion that has the next larger energy level spacing after the rotation fo molecules is the vibration of the atoms of the molecules with respect to each other.

The allowed energies for a single particle of mass m vibrating against a spring with force constant k, that is, experiencing a potential energy U = ½ kx2, where x is the displacement from equilibrium.

εvib = (v + ½ ) h/2∏ √k/m = (v + ½ )hvvib       v = 0, 1, 2 ...

Where v vib, the frequency fo the classical oscillator, represents the term [1/ (2∏)]√k/m. this quantum mechanical result indicates a pattern of energy levels with a constant spacing [h/ (2∏)]√k/m. it is this result that was used for the calculation of the average vibrational energy per degree of freedom.

Classical analysis: now let us investigate the details of the vibrational motion of the atoms of a molecule. The simplest case of a diatomic molecule is our initial concern.

The harmonic oscillator treatment results when we assume that the potential energy of the bond can be described by the function

U = ½ k (r - re)2, where r is the distance between the nuclei of the bonded atoms and re is the value of r at the equilibrium internuclear distance. The constant enters as a proportionality constant, the force constant. It is a measure of the bond.

The classical solution for a vibrating two particle diatomic molecule system can be obtained from Newton's f = ma relation. If the bond is distorted from its equilibrium length re to a new length r, the restoring forces on each atom are - k (r - re). These forces can be equated to the ma terms for each atom where r1 and r2 are the postions of atoms 1 and 2, respectively, relative to the center of mass of the molecule. These forces can be equated to the ma terms for each atom as:

m1 × d2r1/dt2 = - k (r - re) and m2 × d2r2/dt2 = - k (r -re)

Where,  r1 and r2 are the positions of atoms 1 and 2 respectively, relative to the center of mass of the molecule. The relation that keeps the center of mass fixed is r1m1 = r2m2, and with r = r1+ r2 this gives:

r1 = m2/(m1 + m2) × r and r2 = m1/(m1 + m2) × r

Substitution in either of the ƒ = ma equation gives:

m1m2/(m1 + m2) × d2r/dt2 = - k (r - re)

Since r, is a constant, this can also be written:

m1m2/(m1 + m2) × d2 (r- re)/dt2 = - k (r- re)

The term r - re is the displacement of the bond length from its equilibrium position. If the symbol xis introduced as x = r - re and the reduced mass of μ is inserted for the mass term becomes:

μ × d2x/dt2 = - kx

This expression is identical to the corresponding equation for a single particle, except for the replacement of the mass m by the reduced mass. A derivation like the classical vibrational frequency for a two particle system would give the result,

Vvib = 1/2∏ √k/μ 

   Related Questions in Chemistry

  • Q : How haloalkanes are prepared from

    Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.    From alkanesWhen alkanes are treated with halogens, chlo

  • Q : Vant Hoff factor The Van't Hoff factor

    The Van't Hoff factor of the compound K3Fe(CN)6 is: (a) 1  (b) 2  (c) 3  (d) 4  Answer: (d) K3[Fe(CN)6] → 3K+

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : Sedimentation and Velocity The first

    The first method begins with a well defined layer, or boundary, of solution near the center of rotation and tracks the movement of this layer to the outside of the cell as a function of time. Such a method is termed a sedimentary velocity experiment. A

  • Q : From where the tin is obtained From

    From where the tin is obtained? Briefly illustrate it.

  • Q : Chemistry brief discription of relative

    brief discription of relative lowering of vapour pressure

  • Q : Problem on making solutions The weight

    The weight of pure NaOH needed to made 250cm3 of 0.1 N solution is: (a) 4g  (b) 1g  (c) 2g  (d) 10g Choose the right answer from above.

  • Q : Structure of a DNA molecule Elaborate

    Elaborate the structure of a DNA molecule?

  • Q : Vapour pressure related question Help

    Help me to solve this question. Which of the following is incorrect: (a) Relative lowering of vapour pressure is independent (b)The vapour pressure is a colligative property (c)Vapour pressure of a solution is lower than the vapour pressure of the solvent (d)The