--%>

Explain polyhalogen compounds with examples.

Carbon compounds containing more than one halogen atom are called polyhalogen compounds. Most of these compounds are valuable in industry and agriculture. Some important polyhalogen compounds are described as follows:

    
Dichloromethane or methylene chloride, CH3Cl2

Dichloromethane is prepared industrially by direct chlorination of methane. The mixture of CH3Cl, CH2Cl2, CHCl2 and CCl4 so obtained is separated by fractional distillation.

Properties

Dichloromethane is a sweet smelling volatile liquid and its boiling point is 313 K.

Dichloromethane harms the human central nervous system. Exposure to lower levels of dichloromethane in air can lead to slightly impaired hearing and vision. Higher levels of dichloromethane in air can cause dizziness, nauses and numbness in the fingers and toes. Direct skin contact with methylene chloride causes strong burning and mild redness to the skin. Direct contact with eyes can burn cornea.

Uses
    
Because of its low boiling point and low inflammability it is used as extraction solvent in pharmaceutical and food industries. It is also used as solvent for carrying out many organic reactions in research laboratories.
    
It is used as a metal finishing and cleaning solvent.
    
It is also used as a propellent in aerosols.
    
Trichloromethane (Chloroform), CHCl3 

Preparation
    
From methane: chloroform is manufactured by chlorination of methane in the presence of light or catalysts.
1278_polyhalogen compounds.png                                     


The mixture of CH3Cl, CH2Cl2, CHCl3 and CCl4 can be separated by fractional distillation.
    
From chloral hydrate, pure chloroform can be obtained by distilling chloral or chloral hydrate with concentrated aqueous solution or KOH solution.
                    
NaOH + CCl3CHO  1950_electrode potential.png  HCOONa + CHCl2
             
NaOH + CCl3CH(OH)2  1950_electrode potential.png  HCOOna + CHCl3 + H2O

    
Laboratory method: in this method chloroform is obtained from ethanol or acetone by reaction with a paste of bleaching powder and water.

In this reaction, bleaching powder serves as a source of chlorine which first oxidizes ethanol acetaldehyte, which is then further chlorinated to chloral. Chloral reacts with Ca(OH)2, given by CaOCl2, to give chloroform and calcium formate.

   Related Questions in Chemistry

  • Q : Facts on evaporation Illustrate the 3

    Illustrate the 3 facts on evaporation?

  • Q : Colligative property associated question

    Give me answer of this question. Which of the following is not a colligative property : (a)Optical activity (b)Elevation in boiling point (c)Osmotic pressure (d)Lowering of vapour pressure

  • Q : Meaning of Molar solution Molar

    Molar solution signifies 1 mole of solute present/existed in: (i) 1000g of solvent (ii) 1 litre of solvent (iii) 1 litre of solution (iv) 1000g of solution

  • Q : Problem on vapor-liquid equilibrium Two

    Two tanks which contain water are connected to each other through a valve. The initial conditions are as shown (at equilibrium): 683_tank question.jpg

  • Q : Molality of a glucose solution What

    What will be the molality of a solution containing 18g of glucose (having mol. wt. = 180) dissolved in 500g of water: (i) 1m  (ii) 0.5m  (iii) 0.2m  (iv) 2m

  • Q : Mole fraction of hydrogen Give me

    Give me answer of this question. In a mixture of 1 gm H2 and 8 gm O2 , the mole fraction of hydrogen is: (a) 0.667 (b) 0.5 (c) 0.33 (d) None of these

  • Q : Degree of dissociation The degree of

    The degree of dissociation of Ca(No3)2 in a dilute aqueous solution containing 14g of the salt per 200g of water 100oc is 70 percent. If the vapor pressure of water at 100oc is 760 cm. Calculate the vapor pr

  • Q : Question based on strength of solution

    Help me to go through this problem. On dissolving 1 mole of each of the following acids in 1 litre water, the acid which does not give a solution of strength 1N is: (a) HCl (b) Perchloric acid (c) HNO3 (d) Phosphoric acid

  • Q : Moles of chloride ion Select the right

    Select the right answer of the question. A solution of CaCl2 is 0.5 mol litre , then the moles of chloride ion in 500ml will be : (a) 0.25 (b) 0.50 (c) 0.75 (d)1.00

  • Q : Describe First Order Rate Equation The

    The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation. Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions fo