--%>

Explain polyhalogen compounds with examples.

Carbon compounds containing more than one halogen atom are called polyhalogen compounds. Most of these compounds are valuable in industry and agriculture. Some important polyhalogen compounds are described as follows:

    
Dichloromethane or methylene chloride, CH3Cl2

Dichloromethane is prepared industrially by direct chlorination of methane. The mixture of CH3Cl, CH2Cl2, CHCl2 and CCl4 so obtained is separated by fractional distillation.

Properties

Dichloromethane is a sweet smelling volatile liquid and its boiling point is 313 K.

Dichloromethane harms the human central nervous system. Exposure to lower levels of dichloromethane in air can lead to slightly impaired hearing and vision. Higher levels of dichloromethane in air can cause dizziness, nauses and numbness in the fingers and toes. Direct skin contact with methylene chloride causes strong burning and mild redness to the skin. Direct contact with eyes can burn cornea.

Uses
    
Because of its low boiling point and low inflammability it is used as extraction solvent in pharmaceutical and food industries. It is also used as solvent for carrying out many organic reactions in research laboratories.
    
It is used as a metal finishing and cleaning solvent.
    
It is also used as a propellent in aerosols.
    
Trichloromethane (Chloroform), CHCl3 

Preparation
    
From methane: chloroform is manufactured by chlorination of methane in the presence of light or catalysts.
1278_polyhalogen compounds.png                                     


The mixture of CH3Cl, CH2Cl2, CHCl3 and CCl4 can be separated by fractional distillation.
    
From chloral hydrate, pure chloroform can be obtained by distilling chloral or chloral hydrate with concentrated aqueous solution or KOH solution.
                    
NaOH + CCl3CHO  1950_electrode potential.png  HCOONa + CHCl2
             
NaOH + CCl3CH(OH)2  1950_electrode potential.png  HCOOna + CHCl3 + H2O

    
Laboratory method: in this method chloroform is obtained from ethanol or acetone by reaction with a paste of bleaching powder and water.

In this reaction, bleaching powder serves as a source of chlorine which first oxidizes ethanol acetaldehyte, which is then further chlorinated to chloral. Chloral reacts with Ca(OH)2, given by CaOCl2, to give chloroform and calcium formate.

   Related Questions in Chemistry

  • Q : Pressure and power for adiabatic

    a) Air flowing at 1 m3/s enters an adiabatic compressor at 20°C and 1 bar. It exits at 200°C. The isentropic efficiency of the compressor is 80%. Calculate the exit pressure and the power required. b) Steam enter

  • Q : Problem on partial pressure i) Show

    i) Show that the equilibrium constant Kp for the reaction CaCo3(s) ↔ CaO(s) +CO2(g)is about unity (i.e. = 1.0) at 895 °C.ii) If two grams of calcium carbonate are pl

  • Q : Question on Raoults law Give me answer

    Give me answer of this question. For a dilute solution, Raoult's law states that: (a) The lowering of vapour pressure is equal to mole fraction of solute (b) The relative lowering of vapour pressure is equal to mole fraction of solute (c) The relative lowering of v

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Ddd 4) The addition of S2- ion to

    4) The addition of S2- ion to Fe(OH)2(s). Explain why the addition of S2- ion to Cr(OH)3(s) does not result in the formation of Cr2S3(s).

  • Q : Various cons of eating the organic foods

    Describe the various cons of eating the organic foods? Briefly illustrate it.

  • Q : What is covalent radii? Explain its

    Average covalent radii can be assigned on the basis of molecular structures. The accumulation of structural data by spectroscopic studies and both electron and x-ray diffraction studies allows one to investigate the possibili

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : Schrodinger equation with particle in a

    Three dimensional applications of the Schrodinger equation are introduced by the particle-in-a-box problem.So far only a one-dimensional problem has been solved by application of the Schrodinger equation. Now the allowed energies and the probability functi

  • Q : Meaning of molality of a solution The

    The molality of a solution will be: (i) Number of moles of solute per 1000 ml of solvent (ii) Number of moles of solute per 1000 gm of solvent (iii) Number of moles of solute per 1000 ml of solution (iv) Number of gram equivalents of solute per 1000 m