--%>

Describe Enzyme Catalyzed reactions with examples.

Many enzyme catalyzed reactions obeys a complex rate equation that can be written as the total quantity of enzyme and the whole amount of substrate in the reaction system.

Many rate equations that are more complex than first and second order equations and are encountered in chemical rate studies. Such rate equations can be illustrated by considering reactions that occur in biological systems, or at least are affected by enzymes occurring in such systems.

The impact of enzymes on the rate through which chemical reactions move toward their equilibrium position gives one of the most dramatic catalytic effects. Much of the current interest in the subject is centered on the details of the action between the enzyme, which is the catalyst, and the material, known as substrate, whose reaction it effects. It is significant to know that how an enzyme catalyzed reaction proceeds in time and how the catalytic action of the enzyme substrate pair is analysed from the measurement of the development of such reactions.

The experimental data for enzyme catalyzed reactions show a variety of forms that depend on the enzyme, the substrate, the temperature, the presence of interfering substances, and so forth. Many of the behaviors that are found can be looked on as variations from the ideal curve. It is such rate curves for which we now develop a rate equation in a form that is conviently related to the quantities measured in enzymes studies.

Inspection of the curve shows that at high substrate concentrations the rate of the reaction is independent of the substrate concentration. It is, the however, proportional to the total amount of the enzyme. At low substrate concentrations the rate, as shown by the initial straight line section of the curves, is proportional to the substrate concentration. The rate would be found to be proportional to the total enzyme concentration. These features also be found to be proportional by a rate of equation, where R denotes the rate of the reaction, of the form:

R = (const) [Etot ] [ S ] / const' + [S]

To anticipate the notion introduced when the mechanism of enzyme catalyzed reactions is dealt with, we introduce the symbols k2 and KM for the two constants and thus write the equation in the form:

R = k2 [Etot] [S]/const' + [S]

To anticipate the notion when the mechanism of enzyme catalyzed reactions is dealt with, we introduce the symbols k2 and KM for the two constants and thus write the rate equation in the form:

R = k2 [Etot] [S]/KM + [S]

Although the parameters k2 and KM could be determined so that a function corresponding to the experimental more convenient procedure can be found. The initial rate is often obtained by measuring [S] after a time t at which only a small fraction of the substance has been consumed. If[S0] is the initial substrate concentration, we can express the initial rate as [S0] - [S]/t. then it becomes:

[S0] - [S] = k2 [Etot] [S0]/KM + [S0] × t

The "constants" k2 [Etot] and KM can be evaluated from measurements of the initial rate of reaction. This rate, Rinit, is approximately [S0] - [S]/t, where [S] is the concentration after a small time interval t.

Values of Rinit can be obtained for various values of [S0]. A convenient procedure for obtaining the constants is based on the reciprocal of this equation. We write down:

1/Rinit = 1/k2 [Etot] + KM/k2[Etot] × 1/[S0]

Thus, if a plot of 1/Rinit versus 1/S0 gives a straight line, the intercept and slope can be used to obtain k2 [Etot] and KM/k2 [Etot]. From these quantities the value of KM can be calculated. Separation of the factors k2 and [Etot] requires studies of systems with various amounts of enzyme.

   Related Questions in Chemistry

  • Q : Reaction of calcium carbonate Give me

    Give me answer of this question. What is the volume of 0.1NHcl required to react completely with 1.0g of pure calcium carbonate : (Ca= 40, C= 12 and o = 16 ) (a)150cm3 (b)250cm3 (c)200cm3 (d)100cm3

    Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : Partial vapour pressure of volatile

    Choose the right answer from following. For a solution of volatile liquids the partial vapour pressure of each component in solution is directly proportional to: (a) Molarity (b) Mole fraction (c) Molality (d) Normality

  • Q : Problem based on molecular weight

    Select the right answer of the question. Molecular weight of urea is 60. A solution of urea containing 6g urea in one litre is : (a)1 molar (b)1.5 molar (c) 0.1 molar (d) 0.01 molar

  • Q : Calculating density of water using

    What is the percent error in calculating the density of water using the ideal gas law for the following conditions:  a. 110 oC, 1 bar   b. 210 oC 10 bar  c. 374 o

  • Q : Problem on decinormal Select the right

    Select the right answer of the question. How much water is required to dilute 10 ml of 10 N hydrochloric acid to make it exactly decinormal (0.1 N): (a) 990 ml (b) 1000 ml (c) 1010 ml (d) 100 ml

  • Q : Hydrocarbons list and identify

    list and identify differences between the major classes of hydrocarbons

  • Q : Macromolecules what are condensation

    what are condensation polymerization give in with 2 examples

  • Q : Determining maximum Osmotic pressure

    Which of the following would have the maximum osmotic pressure (assume that all salts are 90% dissociated): (a) Decimolar aluminium sulphate (b) Decimolar barium chloride (c) Decimolar sodium sulphate (d) A solution obtained by mix

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules