Worked Examples
Solve with the help of simplex method
Example 1
Maximize Z = 80x1 + 55x2
Subject to
4x1 + 2x2 ≤ 40
2x1 + 4x2 ≤ 32
& x1 ≥ 0, x2 ≥ 0
Answer
SLPP
Maximize Z = 80x1 + 55x2 + 0s1 + 0s2
4x1 + 2x2+ s1= 40
2x1 + 4x2 + s2= 32
x1 ≥ 0, x2 ≥ 0, s1 ≥ 0, s2 ≥ 0
Cj → 80 55 0 0
Basic Variables
CB XB
X1 X2 S1 S2
Min ratio
XB /Xk
s1
s2
0 40
0 32
4 2 1 0
2 4 0 1
40 / 4 = 10→ outgoing
32 / 2 = 16
Z= CB XB = 0
↑incoming
Δ1= -80 Δ2= -55 Δ3=0 Δ4=0
x1
80 10
0 12
(R1=R1 / 4)
1 1/2 1/4 0
(R2=R2- 2R1)
0 3 -1/2 1
10/1/2 = 20
12/3 = 4→ outgoing
Z = 800
Δ1=0 Δ2= -15 Δ3=40 Δ4=0
x2
80 8
55 4
(R1=R1- 1/2R2)
1 0 1/3 -1/6
(R2=R2 / 3)
0 1 -1/6 1/3
Z = 860
Δ1=0 Δ2=0 Δ3=35/2 Δ4=5
As all Δj ≥ 0, optimal basic feasible solution is achieved. Hence the solution is Max Z = 860, x1 = 8 and x2 = 4
Example 2
Maximize Z = 5x1 + 3x2
3x1 + 5x2 ≤ 15
5x1 + 2x2 ≤ 10
Maximize Z = 5x1 + 3x2 + 0s1 + 0s2
3x1 + 5x2+ s1= 15
5x1 + 2x2 + s2= 10
Cj → 5 3 0 0
0 15
0 10
3 5 1 0
5 2 0 1
15 / 3 = 5
10 / 5 = 2 → outgoing
Δ1= -5 Δ2= -3 Δ3=0 Δ4=0
0 9
5 2
(R1=R1- 3R2)
0 19/5 1 -3/5
(R2=R2 /5)
1 2/5 0 1/5
9/19/5 = 45/19 →
2/2/5 = 5
Z = 10
↑
Δ1=0 Δ2= -1 Δ3=0 Δ4=1
3 45/19
5 20/19
(R1=R1 / 19/5)
0 1 5/19 -3/19
(R2=R2 -2/5 R1)
1 0 -2/19 5/19
Z = 235/19
Δ1=0 Δ2=0 Δ3=5/19 Δ4=16/19
As all Δj ≥ 0, optimal basic feasible solution is attained. So the solution is Max Z = 235/19, x1 = 20/19 and x2 = 45/19
Example Sample Assignments 3
Maximize Z = 5x1 + 7x2
x1 + x2 ≤ 4
3x1 - 8x2 ≤ 24
10x1 + 7x2 ≤ 35
Maximize Z = 5x1 + 7x2 + 0s1 + 0s2 + 0s3
x1 + x2 + s1= 4
3x1 - 8x2 + s2= 24
10x1 + 7x2 + s3= 35
x1 ≥ 0, x2 ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0
Cj → 5 7 0 0 0
X1 X2 S1 S2 S3
s3
0 4
0 24
0 35
1 1 1 0 0
3 -8 0 1 0
10 7 0 0 1
4 /1 = 4→outgoing
-
35 / 7 = 5
-5 -7 0 0 0
←Δj
7 4
0 56
0 7
(R2 = R2 + 8R1)
11 0 8 1 0
(R3 = R3 - 7R1)
3 0 -7 0 1
Z = 28
2 0 7 0 0
Because all Δj ≥ 0, optimal basic feasible solution is achieved
Thus the solution is Max Z = 28, x1 = 0 and x2 = 4
Sample Assignment 4
Maximize Z = 2x - 3y + z
3x + 6y + z ≤ 6
4x + 2y + z ≤ 4
x - y + z ≤ 3
& x ≥ 0, y ≥ 0, z ≥ 0
Solution
Maximize Z = 2x - 3y + z + 0s1 + 0s2 + 0s3
3x + 6y + z + s1= 6
4x + 2y + z + s2= 4
x - y + z + s3= 3
x ≥ 0, y ≥ 0, z ≥ 0 s1 ≥ 0, s2 ≥ 0, s3 ≥ 0
Cj → 2 -3 1 0 0 0
X Y Z S1 S2 S3
0 6
0 3
3 6 1 1 0 0
4 2 1 0 1 0
1 -1 1 0 0 1
6 / 3 = 2
4 / 4 =1→ outgoing
3 / 1 = 3
Z = 0
-2 3 -1 0 0 0
x
2 1
0 2
0 9/2 1/4 1 -3/4 0
1 1/2 1/4 0 1/4 0
0 -3/2 3/4 0 -1/4 1
3/1/4=12
1/1/4=4
8/3 = 2.6→
Z = 2
0 4 1/2 0 1/2 0
z
0 7/3
2 1/3
1 8/3
0 5 0 1 -2/3 -1/3
1 1 0 0 1/3 -1/3
0 -2 1 0 -1/3 4/3
Z = 10/3
0 3 0 0 1/3 2/3
As all Δj ≥ 0, optimal basic feasible solution is achieved. Consequently the solution is Max Z = 10/3, x = 1/3, y = 0 and z = 8/3
Example 5
Maximize Z = 3x1 + 5x2
3x1 + 2x2 ≤ 18
x1 ≤ 4
x2 ≤ 6
Maximize Z = 3x1 + 5x2 + 0s1 + 0s2 + 0s3
3x1 + 2x2 + s1= 18
x1 + s2= 4
x2 + s3= 6
Cj → 3 5 0 0 0
CB
XB
X1
X2
S1
S2
S3
0
18
3
2
1
18 / 2 = 9
4
4 / 0 = ∞ (neglect)
6
6 / 1 = 6→
-3
-5
(R1=R1-2R3)
-2
6 / 3 = 2 →
4 / 1 = 4
5
--
Z = 30
(R1=R1 / 3)
1/3
-2/3
(R2=R2 - R1)
-1/3
2/3
Z = 36
As find that, all Δj ≥ 0, optimal basic feasible solution is achieved. As a result the solution is Max Z = 36, x1 = 2, x2 = 6
Example 6
Minimize Z = x1 - 3x2 + 2x3
3x1 - x2 + 3x3 ≤ 7
-2x1 + 4x2 ≤ 12
-4x1 + 3x2 + 8x3 ≤ 10
& x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
Min (-Z) = Max Z? = -x1 + 3x2 - 2x3 + 0s1 + 0s2 + 0s3
3x1 - x2 + 3x3 + s1 = 7
-2x1 + 4x2 + s2 = 12
-4x1 + 3x2 + 8x3 + s3 = 10
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 s1 ≥ 0, s2 ≥ 0, s3 ≥ 0
Cj → -1 3 -2 0 0 0
X3
7
-1
12
3→
10
-4
8
10/3
Z' = 0
(R1 = R1 + R2)
5/2
1/4
4→
(R2 = R2 / 4)
-1/2
(R3 = R3 - 3R2)
-5/2
-3/4
Z' = 9
3/4
(R1 = R1 / 5/2)
6/5
2/5
1/10
(R2 = R2 + 1/2 R1)
3/5
1/5
3/10
(R3 = R3 + 5/2R1)
11
Z' = 11
As all Δj ≥ 0, optimal basic feasible solution is achieved
Thus the solution is Z' =11 which means Z = -11, x1 = 4, x2 = 5, x3 = 0
Example 7
Max Z = 2x + 5y
x + y ≤ 600
0 ≤ x ≤ 400
0 ≤ y ≤ 300
Max Z = 2x + 5y + 0s1 + 0s2 + 0s3
x + y + s1 = 600
x + s2 = 400
y + s3 = 300
x1 ≥ 0, y ≥ 0, s1 ≥ 0, s2 ≥ 0, s3 ≥ 0
Cj → 2 5 0 0 0
X
Y
600
600 / 1 = 600
400
300
300 /1 = 300→
(R1 = R1 - R3)
400 / 1 = 400
y
Z = 1500
(R2 = R2 - R1)
100
Z = 2100
As given that, all Δj ≥ 0, optimal basic feasible solution is achieved. Thus the solution is Z = 2100, x = 300, y = 300
tutorsglobe.com structure of a virus assignment help-homework help by online viruses tutors
Are you feeling tensed? Hire best Commercial Law Assignment Help to get quality work at affordable prices and to score A++!
Get Criminal Law and Procedure Assignment Help now, as our tutors can write on any topic, within tight deadline and fetch you A++ grades!
get 24/7 accessible types of variables assignment help from experts at feasible prices and get top-notch papers timely to score highest.
The electromagnetic spectrum tutorial all along with the key concepts of Range of the spectrum, Interaction of electromagnetic Radiation with Matter, Types of radiation, Nature of Light and Quantum Theory
tutorsglobe.com lyme disease assignment help-homework help by online medical parasitology tutors
tutorsglobe.com renal failure assignment help-homework help by online excretion tutors
Simple Harmonic Motion II tutorial all along with the key concepts of Mass Hanging from a Coiled Spring, Period of Oscillation, Simple Pendulum, Energy of Simple Harmonic Motion, Kinetic Energy, Potential Energy
tutorsglobe.com federal finance assignment help-homework help by online subject matter of public finance tutors
tutorsglobe.com surface acoustic wave filters assignment help-homework help by online if wave traps tutors
tutorsglobe.com association of kp and kc assignment help-homework help by online attainment of equilibrium in chemical reactions tutors
insulation test to earth, insulation tests between phases, insulation test of floors and walls for non-conducting location.
Viruses tutorial all along with the key concepts of Features of Viruses, Structure of a virus, Size and Shape of virus, Classification of virus and viral infections in human beings
Other properties of Gases tutorial all along with the key concepts of Dalton's Law of Partial Pressure, Graham's Law of Diffusion of Gases, Avogadro's Law, rates of diffusion of gases
Mechanism of Antibody Formation tutorial all along with the key concepts of Theories of Antibody Formation, Production of Antibodies, Qualitative Changes and Cellular Events, Antigen/antibody interactions, Lymphocytes, B-Lymphocytes and T-Lymphocytes
1959563
Questions Asked
3689
Tutors
1494657
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!