Power Dissipation in an AC circuit:In common, an ac circuit will have a combination of resistive and reactive components and the reactive elements might be either capacitive or inductive as shown in figure below. This signifies that at different points in the circuit the voltage and current relationships will differ depending on the elements included. From the point of view of a voltage source driving such a circuit, the overall network will have impedance, that has a phase and magnitude and a current will flow into the circuit which as well possesses a corresponding phase and magnitude as shown below.
Figure: The Phase Relationship Associated with an AC Circuit having Reactance
A plot of voltage that is taken as the reference zero angle, and the current with instantaneous power is shown in figure below. The current is observed to lag behind the voltage by an angle . Note that, dissimilar the case for purely and resistive reactive circuits, the instantaneous power profile is not symmetrical. This can be seen in this illustration that the power profile is positive for longer than it is negative and as well that it reaches a higher positive peak than negative peak. This signifies that more power is delivered to the network in each and every cycle of the sinusoidal source than is returned to source. Thus there is a net transfer of power from the source to circuit and this power is dissipated in the resistive components of network.
Figure: Waveforms showing Power Relations in an AC Circuit containing Reactance
Instantaneous Power:The instantaneous power can be found as before as the product of current and voltage as continuous functions of time:If, v(t) = Vm sin ωt and i(t) = Im sin (ωt - Φ)Then, Pi = Vm Im sin ωt. sin (ωt - Φ)
Average Power:
PAVE = (1/T) 0∫T Pidt = (1/T) 0∫Tv(t) i(t) dt
PAVE = (1/T) 0∫T VmIm Sin ωt . Sin (ωt - Φ) dt
PAVE = (VmIm/T) 0∫T Sin ωt . Sin (ωt - Φ) dt
By using the trigonometric expansion:sinA sinB = ½[cos(A - B) – cos(A + B)] where, A = ωt and B = ωt – Φ
PAVE = (VmIm/2T) 0∫T [Cos Φ - Cos (2ωt - Φ)] dt
By using the trigonometric expansion:Cos (A + B) = cosA cosB - sinA sinB where, A = 2ωt and B = – ΦIt gives:
PAVE = (VmIm/2T) 0∫T [Cos(Φ) - Cos(2ωt) Cos(-Φ)+ Sin(2ωt) Sin(-Φ)] dt
But, cos(-Φ) = cos Φ and sin(-Φ) = -sin ΦAnd hence,
PAVE = (VmIm/2T) 0∫T [CosΦ - Cos 2ωt . Cos Φ - Sin 2ωt Sin Φ] dt
The factors cos Φ and sin Φ is constants for a given circuit where there is a given phase shift between the supply current and voltage drawn by the circuit and hence:
The last two terms in this expression encompass a value of zero as prior to and hence finally:PAVE = (Vm Im/2) cos Φ = (Vm/√2) (Im/√2) cos ΦPAVE = VRMS IRMS cos ΦThe term Cos Φ is termed to as Power Factor of the circuit. This is a property of ac network and is recognized by the phase angle of network impedance.Power Factor = cos ΦPower Factor varies between the value of 0 and 1.Φ = 0o => cos Φ = 1 PAVE = VRMS IRMS (Purely resistive circuit)Φ = 90o => cos Φ = 0 PAVE = 0 (Purely reactive circuit)The average power computed above is the real power consumed from the power delivered to network. It is dissipated by the resistive elements of circuit. Though, the source should be rated to produce and deliver the total power demanded by the circuit even although not all of this is consumed. The power dissipated is as well termed to as Active Power and symbolizes energy consumed.
Complex Power:This has been seen from the prior waveform exhibiting the instantaneous power that the positive excursion is bigger than the negative excursion, and hence there is a net transfer of power from the source to load per cycle of the source voltage. Phase of the impedance of network outcomes in a phase angle between current and voltage which gives the Power Factor in the Average or Active Power drawn by the network. Though, as with purely reactive circuits, there is as well some power that is drawn from the source, stored temporarily in the reactive elements and then returned to the source in the later part of each and every cycle. This is termed to as Reactive Power. In practice, the source driving the network should be rated to handle and deliver both active and reactive power, even although only the active power will be dissipated by circuit. The vector sum of Active and Reactive Power is termed to as the Apparent Power and offers the concept of Complex Power as shown in phasor form in figure below.Apparent Power = Active Power + j Reactive PowerApparent Power = Average Power + j Reactive Power
Figure: A Phasor representation of Complex Power
Apparent Power = VRMS IRMS = (Vm Im)/2Active Power or Average Power = VRMS IRMS cos ΦReactive Power = j VRMS IRMS sin ΦV2RMS I2RMS = V2RMS I2RMS cos2 Φ + V2RMS I2RMS sin2 ΦIn order to avoid having to encompass a source that should be capable of providing much more power than is really going to be consumed by a network, the goal is to reduce the amount of reactive power demanded of source. Thus the aim is to make the apparent power and the active power equivalent. This signifies making the power factor as close to unity as possible.Let consider the network impedance as shown in figure below:Z = R + jXSin Φ = X/|Z|Cos Φ = R/|Z|Power factor = Cos Φ = R/|Z|
Figure: Power Factor in Complex Power
Where R is the total equivalent resistance of ac network as seen by the source. This might not really be a resistive element however represent can work done by some piece of machine or equipment that is provided with electrical power and consumes energy.
Z = 193 + j 236 - j 32 Ω
↑ ↑ ↑
Resistance Inductive Capacitive Reactance
Reactance
Current flowing into the circuit from the source can be determined as:i = V/Z = (|V|∠0o)/(|Z|∠ΦZ) = 220∠0o/281∠46.6o = 0.78 ∠46.6o APower factor of the network is shown as:Power factor = cos Φ = cos 46.6o = 0.687Complex power can be computed as:Apparent Power = VRMS IRMS = (Vm Im)/2 = (220 x 0.78)/2 = 85.8 WActive power = VRMS IRMS = [(Vm Im)/2] cos Φ = 85.8 x 0.687 = 58.9 WReactive Power = j VRMS IRMS sin Φ = j [(Vm Im)/2] sin Φ = j 85.8 x 0.727 = j 62.4 W
Latest technology based Electrical Engineering Online Tutoring Assistance
Tutors, at the www.tutorsglobe.com, take pledge to provide full satisfaction and assurance in Electrical Engineering help via online tutoring. Students are getting 100% satisfaction by online tutors across the globe. Here you can get homework help for Electrical Engineering, project ideas and tutorials. We provide email based Electrical Engineering help. You can join us to ask queries 24x7 with live, experienced and qualified online tutors specialized in Electrical Engineering. Through Online Tutoring, you would be able to complete your homework or assignments at your home. Tutors at the TutorsGlobe are committed to provide the best quality online tutoring assistance for Electrical Engineering Homework help and assignment help services. They use their experience, as they have solved thousands of the Electrical Engineering assignments, which may help you to solve your complex issues of Electrical Engineering. TutorsGlobe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.
tutorsglobe.com properties of silver nitrate assignment help-homework help by online silver nitrate tutors
Later than the connections and rewinding are completed; it is significant that both the winding and the connections are checked for shorts, grounds, open circuits and accuracy of connections.
Friction tutorial all along with the key concepts of Laws of Friction, Coefficient of Friction, Coefficient of Friction Formula, Nature of Friction, Coefficients of static and kinetic friction, Frictional Coefficient
tutorsglobe.com aggregate fruit assignment help-homework help by online structure of fruit tutors
Precipitation Gravimetry tutorial all along with the key concepts of Solubility Considerations, How to obtain precipitate of high purity, Steps involved in Gravimetric Analysis, Preparation of the Solution, Precipitation, Filtration and Drying or igniting the precipitate
Want top-notch grades in complex tasks? Hire proficient Marginal Productivity Theory of Distribution Assignment Help tutors to score A++!
The accomplishment of an inter-firm’ comparison scheme relies on the successful operation of uniform costing system. The comparison would be futile and farce without Uniform Costing.
The income statement, such as the statement of financial position, has been around for a long time. Most main businesses seem to get ready an income statement on a regular basis (monthly or even more often).
tutorsglobe.com mini hydel generation assignment help-homework help by online energy crisis tutors
A significant step in computation and analysis of cost is the categorization of costs into various types. Classification assists in better control of the costs and also assists significantly in decision making.
tutorsglobe.com pits assignment help-homework help by online cell wall tutors
Reactions of Aldehydes and Ketones tutorial all along with the key concepts of Carbonyl Carbon consists of a nucleophilic site, Nucleophilic Addition, Condensation Reaction, Reactions of Aldehydes and Ketones, Cannizzaro Reaction, Uses of Aldehydes and Ketones
tutorsglobe.com gamopetalous and regular assignment help-homework help by online forms of corolla tutors
For Hand Winding method, four numbers of slot feeders are laced in the two selected slot at a distance from the coil pitch.
We greatly acclaimed our Urban Culture and Development Assignment Help, as our tutors are available 24x7 to help you to score high!
1944057
Questions Asked
3689
Tutors
1482763
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!