Introduction
Suppose we consider the similar particle as in chapter but this time it is constrained to shift in a rectangular box of dimensions a, b and c in length. Within the box (i.e. between x= 0 and a; y = 0 and b and z = 0 and c), the potential energy is zero. At the walls and everywhere outside the box, the potential is.
Definition of Particle in a Three-Dimensional Box
The Schrodinger wave equation for 3 dimensional (3D) box is
δ2φ/δx2 + δ2φ/δy2 + δ2φ/δz2 + 8 π2m/h2(E-V) φ =0
where and V are (x,y,z).
since V = 0 inside the box, then the equation becomes
δ2φ/δx2 + δ2φ/δy2 + δ2φ/δz2 + 8 π2m/h2Eφ=0
Equation may be solved by writing the wave function as the product of 3 functions, each depending on one coordinate.
φ(x, y, z) = X(x)Y(y)Z(z)
differentiating equation gives
δφ/δx = Y (y) Z (z) δx/δx
δ2φ/δx2= Y (y) Z(z) δ2x/δx2
and by a similar reasoning
δ2φ/δy2 = X (x)Z(z) δ2y/δy2
δ2φ/δz2 = X(x)Y(y) δ2z/δz2
Y(y)Z(z)δ2x/δx2 + X(x)Z(z) ) δ2y/δy2 + X(x)Y(y) δ2z/δz2 + 8 π2m/h2 EX(x)Y(y)Z(z) = 0 dividing all through by Y(y)X(x)Z(z) one obtains
-h2/8 π2 m* 1/X(x) δ2x/δx2 +1/Y(y) * δ2y/δy2 + 1/Z(z) δ2z/δz2 = E
We can write the energy as the sum of three contributions associated with the coordinates.
E = Ex + Ey + Ez
using equation, we can divide the expression attained into 3 equations.
-h2/8 π2 m *1/x δ2x/δx2 = Ex
-h2/8 π2 m *1/y δ2y/δy2 = Ey
-h2/8 π2 m *1/z δ2z/δz2 = Ez
Each of the last three equations is similar to the expression for the particle in a one-dimensional box discussed in chapter. Hence their solutions are respectively:
X = [√(2/a)]sin nπx/a
En,x = n2xh2/8ma2
Y = [√(2/b)]sin nπy/b
En,y = n2y h2/ 8mb2
X = [√(2/c)] sin nπx/c
En,z = n2z h2/ 8mc2
Where a, b, c are length in x, y, z directions, correspondingly. Also, nx, ny, nz are the quantum numbers correspondingly.
Since φ (x, y, z) = X(x)Y(y)Z(z) and E = Ex + Ey + Ez, then
ψ (x,y,z) = √a/v sin(nπx/a) sin(nπy/b) sin(nπz/c)
where V is the volume of the box.
Ex,y,z = h2/δm * n2x/a2 + n2y/b2 [+ n2z/c2]
Whenever the three dimensional box has geometrical symmetry, more interesting results are often obtained. For example, in a cubic box, a = b =c, thus equation becomes
E = h2/ φm(n2x + n2y + n2z)
Suppose nx =3, ny = nz =2, then
Ψ(x,y,z) = [/(8/v)] sin3πx/a* sin2πy/a*sin2πz/a]
E = h2/8ma2(32 + 22+ 22) = 17h2/8ma2
Assuming we have another set of values nx =2, ny =3, nz =2, then
Ψ(x,y,z) = [/(8/v )]sin 2πx/a sin3πy/a sin2πz/a
E = h2/8ma2 (22 + 32+ 22) = 17h2/8ma2
Suppose nx =2, ny =2, nz =3, then
Ψ(x,y,z) = [/( 8/v)]sin2πx/a sin2πy/a sin3πz/a
E = h2/8ma2(22 + 22+ 32) = 17h2/8ma2
Even though such states are different, the values of the energies are the same. The three states are said to be degenerate since they have equal energy.
For a situation where nx = ny = nz = 1, it corresponds to only one state of the system. The same is true of nx = ny = nz = 2, but situations such as nx ≠ ny = nz three degenerate states are obtained as shown in the Figure below.
Fig: Quantized Energy Levels of a Particle in a Cubic Box
Suppose we wish to calculate the transition energy between the levels E2,2.2 and E3,2,1 then the energy difference is calculated as
ΔE = hν = 14h2/8ma2 - 12h2/8ma2 = 2h2/8ma2 = h2/4ma2
Given suitable data, it should be possible for us to calculate the frequency (ν) of the transition between the two states.
Zero point energy
According the old quantum theory, the energy level of a harmonic oscillator is E = hv.
The lowest energy level via n = 0 would have zero energy. Depend on the wave treatment of the system, the energy level corresponds to the state with quantum numbers nx = ny = nz =1. The dissimilarity between such 2 values is termed the zero point energy.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with an expert at http://www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online chemistry tutoring. Chat with us or submit request at info@tutorsglobe.com
Precipitation Gravimetry tutorial all along with the key concepts of Solubility Considerations, How to obtain precipitate of high purity, Steps involved in Gravimetric Analysis, Preparation of the Solution, Precipitation, Filtration and Drying or igniting the precipitate
The Angiosperms tutorial all along with the key concepts of Common features of Angiosperms, Adaptive Features, Monocotyledoneae and Dicotyledoneae
Vegetative Structure of Seed Plants-Leaf tutorial all along with the key concepts of Anatomy of Leaf, Epidermis, Mesophyll, Veins and Leaf morphology
Seedless plants and Spermatophytes tutorial all along with the key concepts of Division Bryophyta, Division Pteridophyta, The Spermatophytes and Division Angiospermae
tutorsglobe.com energy and enzymes assignment help-homework help by online general microbiology tutors
tutorsglobe.com budget line of consumer assignment help-homework help by online theory of consumer behavior tutors
tutorsglobe.com significance of viruses assignment help-homework help by online viruses tutors
tutorsglobe.com primary wall assignment help-homework help by online structure of the cell wall tutors
tutorsglobe.com change of electron affinity along a period assignment help-homework help by online electron affinity tutors
Morphology of pteridophytes tutorial all along with the key concepts of Characteristics of Pteridophytes, Life cycle of Pteridophytes, Fossilization Process, Type of fossilization, Types of fossils, Petrifaction, Cast or incrustation, Compression
Respiration in Plants tutorial all along with the key concepts of Respiratory System in Plants, Types of respiration, Steps in the Aerobic respiration, Conditions influencing Respiration.
tutorsglobe.com market equilibrium assignment help-homework help by online demand and supply tutors
molecular nanotechnology, occasionally termed as molecular manufacturing, explains engineered nano systems (nanoscale machines) that operating on the molecular scale.
describe the framework for pert and cpm, five helpful questions to ask while preparing an activity network are given in tutorial.
Reserves are profits and gains that a company has made and that still form part of the equity of shareholders.
1931513
Questions Asked
3689
Tutors
1445221
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!