--%>

What is chemisorption or chemical adsorption?

When the forces of attraction existing between adsorbate particles and adsorbent almost of the same strength as chemical bonds, the adsorption is called chemical adsorption. This type of adsorption is also known as chemisorptions. Since forces of attraction existing between adsorbent and adsorbate are relatively strong, therefore, this type of adsorption cannot be easily reversed. 

Characteristics of chemisorptions

Some important characteristics of chemisorptions are as follows:

(i) High specificity: chemisorptions is highly specific in nature. It occurs only if there is a possibility of bond formation between adsorbent and adsorbate molecules. For example O2 is adsorbed on metals by virtue of oxide formation and H2 is absorbed by transition metals due to hydride formation.

(ii) Irreversibility: as chemisorptions involve the compound formation between adsorbent and adsorbate, it is generally irreversible.

(iii) Enthalpy of adsorption: attractive forces between adsorbent and adsorbate molecules are strong chemical bonds and therefore, molar heat of adsorption is high and is of the order of 200-400 kJ mol-1.

(iv) High activation energy: although chemisorptions is exothermic, yet the process is slow at low temperature. It is because of high activation energy required for chemical process to occur. Like most of the chemical changes the extent of chemisorption increases initially with rise in temperature. High pressure is also supporting for chemisorption.

(v) Surface area: like physisorption, chemisorption also increases with increase in surface area of adsorbent.

(vi) State of adsorbate: since chemical reaction takes place in this type of adsorption, therefore, the molecular state of adsorbate molecules may be altered. For example, oxygen exists as O2, but on the surface where it is chemisorbed, it may exist as O2-, O22-, O-, O, O3-, etc.

(vii) Activation energy: chemical adsorption involves a chemical reaction between adsorbent and adsorbate; therefore, it requires high activation energy.

The adsorption of N2 on iron under two different conditions provides distinction between physisorption and chemisorption. At 83 K nitrogen gas undergoes physical adsorption on iron surface. N2 molecules are amount of N2 adsorbed decreases with further rise in temperature. At room temperature there is almost again shows adsorption as N atoms on the iron surface. This mode of adsorption is chemical adsorption as atoms form chemical bonds with iron atoms.

   Related Questions in Chemistry

  • Q : Describe various systems for

    Common system According to this system, the individual members are named according to alkyl groups att

  • Q : Modes of concentration Which of the

    Which of the given modes of expressing concentration is fully independent of temperature: (1) Molarity (2) Molality (3) Formality (4) Normality Choose the right answer from above.

  • Q : Depression in the freezing point When

    When 0.01 mole of sugar is dissolved in 100g of a solvent, the depression in freezing point is 0.40o. When 0.03 mole of glucose is dissolved in 50g of the same solvent, depression in the freezing point will be:(a) 0.60o  (b) 0.80o

  • Q : Means of molality Give me answer of

    Give me answer of this question. The number of moles of solute per kg of a solvent is called its: (a) Molarity (b) Normality (c) Molar fraction (d) Molality

  • Q : Problem on decinormal Select the right

    Select the right answer of the question. How much water is required to dilute 10 ml of 10 N hydrochloric acid to make it exactly decinormal (0.1 N): (a) 990 ml (b) 1000 ml (c) 1010 ml (d) 100 ml

  • Q : Problem based on lowering in vapour

    Help me to solve this problem. An aqueous solution of glucose was prepared by dissolving 18 g of glucose in 90 g of water. The relative lowering in vapour pressure is: (a) 0.02 (b)1 (c) 20 (d)180

  • Q : Explain the mechanism of Enzyme

    A mechanism for enzyme-catalyzed reactions that leads to the typical rate equation for these reactions can be described.A variety of rate equations are required to portray the rates of enzymes catalyzed reagents and physical conditions that are encountered

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : Explain vapour pressure of liquid

    Liquid solutions are obtained when the solvent is liquid. The solute can be a gas, liquid or a solid. In this section we will discuss the liquid solutions containing solid or liquid solutes. In such solutions the solute may or may not be volatile. We shall limit our d

  • Q : What is synthetic rubber and how it

    To meet human needs, scientists have started preparing synthetic rubbers. Besides having similar properties as natural rubbers they are tougher, more flexible and more durable than natural rubber. They are capable of getting stretched to twice its length. Though, it reverts to its original shape