--%>

What is chemisorption or chemical adsorption?

When the forces of attraction existing between adsorbate particles and adsorbent almost of the same strength as chemical bonds, the adsorption is called chemical adsorption. This type of adsorption is also known as chemisorptions. Since forces of attraction existing between adsorbent and adsorbate are relatively strong, therefore, this type of adsorption cannot be easily reversed. 

Characteristics of chemisorptions

Some important characteristics of chemisorptions are as follows:

(i) High specificity: chemisorptions is highly specific in nature. It occurs only if there is a possibility of bond formation between adsorbent and adsorbate molecules. For example O2 is adsorbed on metals by virtue of oxide formation and H2 is absorbed by transition metals due to hydride formation.

(ii) Irreversibility: as chemisorptions involve the compound formation between adsorbent and adsorbate, it is generally irreversible.

(iii) Enthalpy of adsorption: attractive forces between adsorbent and adsorbate molecules are strong chemical bonds and therefore, molar heat of adsorption is high and is of the order of 200-400 kJ mol-1.

(iv) High activation energy: although chemisorptions is exothermic, yet the process is slow at low temperature. It is because of high activation energy required for chemical process to occur. Like most of the chemical changes the extent of chemisorption increases initially with rise in temperature. High pressure is also supporting for chemisorption.

(v) Surface area: like physisorption, chemisorption also increases with increase in surface area of adsorbent.

(vi) State of adsorbate: since chemical reaction takes place in this type of adsorption, therefore, the molecular state of adsorbate molecules may be altered. For example, oxygen exists as O2, but on the surface where it is chemisorbed, it may exist as O2-, O22-, O-, O, O3-, etc.

(vii) Activation energy: chemical adsorption involves a chemical reaction between adsorbent and adsorbate; therefore, it requires high activation energy.

The adsorption of N2 on iron under two different conditions provides distinction between physisorption and chemisorption. At 83 K nitrogen gas undergoes physical adsorption on iron surface. N2 molecules are amount of N2 adsorbed decreases with further rise in temperature. At room temperature there is almost again shows adsorption as N atoms on the iron surface. This mode of adsorption is chemical adsorption as atoms form chemical bonds with iron atoms.

   Related Questions in Chemistry

  • Q : Procedure for separating the components

    Briefly describe the procedure for separating the components of the gun-powder?

  • Q : Explain alcohols and phenols in organic

    Alcohols and phenols are the compounds

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Calculating Formulae Superphosphate has

    Superphosphate has the formula CaH4(PO4)2 H2O, what is the calculation to get the percentage of Phosphorus, I need to show the calculation. I know it is 30.9737622 u in weight and 2 atoms of the formula, but not sure how to work the calculation backwards.

  • Q : Depression in the freezing point When

    When 0.01 mole of sugar is dissolved in 100g of a solvent, the depression in freezing point is 0.40o. When 0.03 mole of glucose is dissolved in 50g of the same solvent, depression in the freezing point will be:(a) 0.60o  (b) 0.80o

  • Q : Describe the properties of the

    Briefly describe the properties of the carbohydrates?

  • Q : Mole 2.0gram of dolomite is heated to a

    2.0gram of dolomite is heated to a constant weight of 1.0g. Calculate the total volume of CO2 produced at STP by this reation

  • Q : What is Distillation Separation by

    Separation by distillation can be described with a boiling point diagram. The important process of distillation can now be investigated. From the boiling point diagram one can see that if a small amount of vapour were removed from a liquid of composit

  • Q : Reason for medications contain hcl What

    What is the reason behind this that some medications contain hcl?

  • Q : Latent heat of vaporization Normal

    Normal butane (C4H10) is stored as a compressed liquid at 90°C and 1400 kPa. In order to use the butane in a low-pressure gas-phase process, it is throttled to 150 kPa and passed through a vaporizer. The butane emerges from the vaporizer as a