--%>

What is chemisorption or chemical adsorption?

When the forces of attraction existing between adsorbate particles and adsorbent almost of the same strength as chemical bonds, the adsorption is called chemical adsorption. This type of adsorption is also known as chemisorptions. Since forces of attraction existing between adsorbent and adsorbate are relatively strong, therefore, this type of adsorption cannot be easily reversed. 

Characteristics of chemisorptions

Some important characteristics of chemisorptions are as follows:

(i) High specificity: chemisorptions is highly specific in nature. It occurs only if there is a possibility of bond formation between adsorbent and adsorbate molecules. For example O2 is adsorbed on metals by virtue of oxide formation and H2 is absorbed by transition metals due to hydride formation.

(ii) Irreversibility: as chemisorptions involve the compound formation between adsorbent and adsorbate, it is generally irreversible.

(iii) Enthalpy of adsorption: attractive forces between adsorbent and adsorbate molecules are strong chemical bonds and therefore, molar heat of adsorption is high and is of the order of 200-400 kJ mol-1.

(iv) High activation energy: although chemisorptions is exothermic, yet the process is slow at low temperature. It is because of high activation energy required for chemical process to occur. Like most of the chemical changes the extent of chemisorption increases initially with rise in temperature. High pressure is also supporting for chemisorption.

(v) Surface area: like physisorption, chemisorption also increases with increase in surface area of adsorbent.

(vi) State of adsorbate: since chemical reaction takes place in this type of adsorption, therefore, the molecular state of adsorbate molecules may be altered. For example, oxygen exists as O2, but on the surface where it is chemisorbed, it may exist as O2-, O22-, O-, O, O3-, etc.

(vii) Activation energy: chemical adsorption involves a chemical reaction between adsorbent and adsorbate; therefore, it requires high activation energy.

The adsorption of N2 on iron under two different conditions provides distinction between physisorption and chemisorption. At 83 K nitrogen gas undergoes physical adsorption on iron surface. N2 molecules are amount of N2 adsorbed decreases with further rise in temperature. At room temperature there is almost again shows adsorption as N atoms on the iron surface. This mode of adsorption is chemical adsorption as atoms form chemical bonds with iron atoms.

   Related Questions in Chemistry

  • Q : Molality of glucose Help me to go

    Help me to go through this problem. Molecular weight of glucose is 180. A solution of glucose which contains 18 gms per litre is : (a) 2 molal (b) 1 molal (c) 0.1 molal (d)18 molal

  • Q : Molar mass what is the equation for

    what is the equation for calculating molar mass of non volatile solute

  • Q : Vapour pressure of benzene Give me

    Give me answer of this question. The vapour pressure of benzene at a certain temperature is 640mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600,mm of Hg . What is the mo

  • Q : What are haloalkanes and haloarenes and

    Alkyl halides or haloalkanes are the compounds in which a halogen is bonded to an alkyl group. They have the general formula RX (where R is alkyl grou

  • Q : Degree of dissociation The degree of

    The degree of dissociation of Ca(No3)2 in a dilute aqueous solution containing 14g of the salt per 200g of water 100oc is 70 percent. If the vapor pressure of water at 100oc is 760 cm. Calculate the vapor pr

  • Q : Solubility product On passing H 2 S gas

    On passing H2S gas through a particular solution of Cu+ and Zn+2 ions, first CuS is precipitated because : (a)Solubility product of CuS is equal to the ionic product of ZnS (b) Solubility product of CuS is equal to the solubility product

  • Q : Describe First Order Rate Equation The

    The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation. Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions fo

  • Q : Explain preparation and properties of

    It may be prepared by the action of phosphorus on thionyl chloride.P4 + 8SOCl2    4

  • Q : P block why BiF3 is ionic whereas other

    why BiF3 is ionic whereas other trihalides are covalent in nature?

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M