--%>

Molecular energies and speeds

The average translational kinetic energies and speeds of the molecules of a gas can be calculated.

The result that the kinetic energy of 1 mol of the molecules of a gas is equal to 3/2 RT can be used to obtain numerical values for the average energies and speeds of these molecules. Notice, first, the remarkable generality of the relation KE = 3/2 RT. The translational kinetic energy of 1 mol of molecules, and therefore the average translational energy of the individual molecules, and therefore the average translational energy of the individual molecules, depends on only the temperature of the gas. None of the properties of the molecules not the atomic makeup, not the mass, not the shape-need is considered. The average kinetic energy of gas molecules depends on only the temperature.

Molecular translational energies: the value of R was obtained as 8.3143 J K-1 mol-1. The translational kinetic energy of 1 mol of gas molecules at 25°C (298.15 K) is

3/2 RT = 3/2 (8.3143 J K-1 mol-1) (298.15 K)

= 3718 J mol-1 = 3.718 kJ mol-1

This quantity, about 4 kJ/mol, will be a useful reference energy amount. It is a measure of the readily available, or "loose-change, " energy.

The average energy of a single molecule is given by

ke? = KE/ 639_molecular energy.png = (3/2 RT)/ 639_molecular energy.png 

For dealing with the energies of individual atoms or molecules, it is convenient to introduce a constant k, called the Boltzmann constant, as

K = R/ 639_molecular energy.png = 1.3806 × 10-23 J K-1

Notice that the Boltzmann constant is the gas constant per molecule. With this new constant we can express the average translational kinetic energy of a molecule of a gas as

ke? = 3/2 kT 

This energy, at 25°C, is

ke? = 3/2 (1.3806 × 10-23 J K-1) (298.15 K)

= 6.174 × 10-23 J


Speeds of molecules: energies have broader application in chemistry than do speeds. But at first it is easier to appreciate speeds.

Consider a gas that contains molecules of a particular mass. Molecular speed values can be obtained by writing the kinetic energy of 1 mol of these molecules as

KE = 639_molecular energy.png (1/2 mv2?) = ½( 639_molecular energy.png m)v2? = ½ Mv2?

Where M is the mass of 1 mol of molecules. This kinetic energy is given, according to our kinetic-molecular theory deviation, by

KE = 3/2 RT

Equating these expressions and rearranging give

√v2 = √3RT/M

The cumbersome term √v2 is known as the root mean square (rms) speed. It is the value that would be obtained if each molecular speed were squared, the average value of the squared terms was calculated, and finally the square root of this average is obtained. The rms value is only slightly different from a simple average if the individual contributions are bunched closely together. The rms value is typically about 10 percent higher than the simple average. We can, for the moment, take the rms value as being indicative of the average molecular speed.

Average speeds of gas molecules (equal to 0.921 √v2) at 25°C (298 K) and 1000°C (1273 K)

357_molecular energy1.png

   Related Questions in Chemistry

  • Q : Hydrocarbons list and identify

    list and identify differences between the major classes of hydrocarbons

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Relative lowering of vapour pressure

    Which of the following solutions will have a lower vapour pressure and why? a) A 5% aqueous solution of cane sugar. b) A 5% aqueous solution of urea.

  • Q : Problem on MM equation How to obtain

    How to obtain relation between Vm and Km,given k(sec^-1) = Vmax/mg of enzyme x molecular weight x 1min/60 sec S* = 4.576(log K -10.753-logT+Ea/4.576T).

  • Q : P block why BiF3 is ionic whereas other

    why BiF3 is ionic whereas other trihalides are covalent in nature?

  • Q : Solutions The normality of 10 lit.

    The normality of 10 lit. volume hydrogen peroxide is: (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 (e)17.8

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Thermodynamics I) Sulphur dioxide (SO2)

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267

  • Q : Modern periodic table and Mendeleevs

    Differentiate between the modern periodic table and Mendeleevs table?

  • Q : Problem on convection coefficient An

    An experiment to determine the convection coefficient associated with airflow over the surface of a thick stainless steel casting involves insertion of thermocouples in the casting at distances of 10 mm and 20 mm from the surface.  When the experiment was perform