--%>

Molecular energies and speeds

The average translational kinetic energies and speeds of the molecules of a gas can be calculated.

The result that the kinetic energy of 1 mol of the molecules of a gas is equal to 3/2 RT can be used to obtain numerical values for the average energies and speeds of these molecules. Notice, first, the remarkable generality of the relation KE = 3/2 RT. The translational kinetic energy of 1 mol of molecules, and therefore the average translational energy of the individual molecules, and therefore the average translational energy of the individual molecules, depends on only the temperature of the gas. None of the properties of the molecules not the atomic makeup, not the mass, not the shape-need is considered. The average kinetic energy of gas molecules depends on only the temperature.

Molecular translational energies: the value of R was obtained as 8.3143 J K-1 mol-1. The translational kinetic energy of 1 mol of gas molecules at 25°C (298.15 K) is

3/2 RT = 3/2 (8.3143 J K-1 mol-1) (298.15 K)

= 3718 J mol-1 = 3.718 kJ mol-1

This quantity, about 4 kJ/mol, will be a useful reference energy amount. It is a measure of the readily available, or "loose-change, " energy.

The average energy of a single molecule is given by

ke? = KE/ 639_molecular energy.png = (3/2 RT)/ 639_molecular energy.png 

For dealing with the energies of individual atoms or molecules, it is convenient to introduce a constant k, called the Boltzmann constant, as

K = R/ 639_molecular energy.png = 1.3806 × 10-23 J K-1

Notice that the Boltzmann constant is the gas constant per molecule. With this new constant we can express the average translational kinetic energy of a molecule of a gas as

ke? = 3/2 kT 

This energy, at 25°C, is

ke? = 3/2 (1.3806 × 10-23 J K-1) (298.15 K)

= 6.174 × 10-23 J


Speeds of molecules: energies have broader application in chemistry than do speeds. But at first it is easier to appreciate speeds.

Consider a gas that contains molecules of a particular mass. Molecular speed values can be obtained by writing the kinetic energy of 1 mol of these molecules as

KE = 639_molecular energy.png (1/2 mv2?) = ½( 639_molecular energy.png m)v2? = ½ Mv2?

Where M is the mass of 1 mol of molecules. This kinetic energy is given, according to our kinetic-molecular theory deviation, by

KE = 3/2 RT

Equating these expressions and rearranging give

√v2 = √3RT/M

The cumbersome term √v2 is known as the root mean square (rms) speed. It is the value that would be obtained if each molecular speed were squared, the average value of the squared terms was calculated, and finally the square root of this average is obtained. The rms value is only slightly different from a simple average if the individual contributions are bunched closely together. The rms value is typically about 10 percent higher than the simple average. We can, for the moment, take the rms value as being indicative of the average molecular speed.

Average speeds of gas molecules (equal to 0.921 √v2) at 25°C (298 K) and 1000°C (1273 K)

357_molecular energy1.png

   Related Questions in Chemistry

  • Q : Molar mass of compound The freezing

    The freezing point of a solution having 4.8 g of a compound in 60 g of benzene is 4.48. Determine the molar mass of the compound (Kf = 5.1 Km-1) , (freezing point of  benzene = 5.5oC)          &n

  • Q : Importance of organic chemistry

    Describe the importance of organic chemistry?

  • Q : Problem based on molality of glucose

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Problem on making solution Select the

    Select the right answer of the question. The weight of H2C2O42H2O required to prepare 500ml of 0.2N solution is : (a) 126g (b) 12.6g (c) 63g (d) 6.3g

  • Q : Polyhalogen compounds we need 10

    we need 10 examples for the polyhalogen compounds....please help me....need it urgently...

  • Q : Concentration of Barium chloride Give

    Give me answer of this question. If 5.0gm of BaCl2 is present in 106 gm solution, the concentration is: (a)1 ppm (b)5 ppm (c)50 ppm (d)1000 ppm

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Effect on vapour pressure of dissolving

    Give me answer of this question. When a substance is dissolved in a solvent the vapour pressure of the solvent is decreased. This results in: (a) An increase in the b.p. of the solution (b) A decrease in the b.p. of the solvent (c) The solution having a higher fr

  • Q : Problem on bubble point The following

    The following mixture of hydrocarbons is obtained as one stream in a petroleum refinery.

    Q : Problem on equilibrium composition The

    The catalytic dehydrogenation of 1-butene to 1,3-butadiene, C4H8(g) = C4H6(g)+H2(g) is carried out at 900 K and 1 atm.

    Discover Q & A

    Leading Solution Library
    Avail More Than 1460993 Solved problems, classrooms assignments, textbook's solutions, for quick Downloads
    No hassle, Instant Access
    Start Discovering

    18,76,764

    1948818
    Asked

    3,689

    Active Tutors

    1460993

    Questions
    Answered

    Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!

    Submit Assignment

    ©TutorsGlobe All rights reserved 2022-2023.