--%>

What are Vander Waal's Radii?

Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. 

Diffraction studies of crystals give information about hoe molecules can approach each other and can pack together. Forces, often treated under the name vander Waal's forces, provide the attraction and repulsion between molecules that are responsible for the closeness with which molecules can approach other. The idea of a vander Waals radius for each covalently bound atom is introduced. The shapes attributed to molecules as a result of the introduction of vander Waals radii.

The values of these radii can be deduced from the distances that separate atoms in different molecules in a crystal lattice. In crystalline Br2, the shortest distance between a bromine atom of one molecule and that of an adjacent molecule is 390 pm. Half this value, 195 pm, can therefore be assigned as the van der Waals radius of a covalently bound bromine atom. In similar ways, by making use of crystal structure data for many organic compounds, the van der Waals radii can be deduced. These values must be considered reliable to not more than about 5 pm, and this uncertainty makes itself evident in the range of values found for a particular element in different compounds and crystals. The values are sufficiently reliable, however, for scale drawings to be constructed and used to see hoe molecules can fit together. That van der Waals radii can be assigned with some success is attributable to the fact, mentioned, that the repulsive forces set in very strongly i.e. the potential energy curve raised very steeply, as atoms approach each other. It follows that even when rather different attractive forces operate, the closeness of approach is affected little.


2125_Vander waals.png

   Related Questions in Chemistry

  • Q : Problem on making solutions The weight

    The weight of pure NaOH needed to made 250cm3 of 0.1 N solution is: (a) 4g  (b) 1g  (c) 2g  (d) 10g Choose the right answer from above.

  • Q : Concentration of an aqueous solution

    Give me answer of this question. The concentration of an aqueous solution of 0.01M CH3OH solution is very nearly equal to which of the following : (a) 0.01%CH3OH (b) 0.1%CH3OH (c) xCH3OH= 0.01 (d) 0.99MH2O (

  • Q : How to test a gas to see if it was

    Write a short note to describe how to test a gas to see if it was hydrogen or not?

  • Q : What do you mean by the term tripod

    What do you mean by the term tripod? Also state its uses?

  • Q : Define alum Illustrate alum?

    Illustrate alum?

  • Q : Question based on maximum vapour

    Provide solution of this question. Which has maximum vapour pressure: (a) HI (b) HBr (c) HCl (d) HF

  • Q : Molecular Structure type The ionic

    The ionic radii of Rb+ and I- respectively are 1.46 Å and 2.16Å. The very most probable type of structure exhibited by it is: (a) CsCl type  (b) ZnS type  (c) Nacl type  (d) CaF2 type

    Q : Group IV Cations Chromium(III)

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer.

  • Q : Mole fraction Give me answer of

    Give me answer of following question. The sum of the mole fraction of the components of a solution is : (a) 0 (b) 1 (c) 2 (d) 4.

  • Q : Explain solid in liquid solutions. The

    The French chemist Francois Marie Raoult (1886) carried out a series of experiments to study the vapour pressure of a number of binary solutions. On the basis of the results of the experiments, he proposed a generalization called Raoult's law which states that, <