--%>

What are Vander Waal's Radii?

Vander Waal's radii can be assigned to the atoms of molecules on the basis of the closeness of approach of these atoms in crystalline substances. 

Diffraction studies of crystals give information about hoe molecules can approach each other and can pack together. Forces, often treated under the name vander Waal's forces, provide the attraction and repulsion between molecules that are responsible for the closeness with which molecules can approach other. The idea of a vander Waals radius for each covalently bound atom is introduced. The shapes attributed to molecules as a result of the introduction of vander Waals radii.

The values of these radii can be deduced from the distances that separate atoms in different molecules in a crystal lattice. In crystalline Br2, the shortest distance between a bromine atom of one molecule and that of an adjacent molecule is 390 pm. Half this value, 195 pm, can therefore be assigned as the van der Waals radius of a covalently bound bromine atom. In similar ways, by making use of crystal structure data for many organic compounds, the van der Waals radii can be deduced. These values must be considered reliable to not more than about 5 pm, and this uncertainty makes itself evident in the range of values found for a particular element in different compounds and crystals. The values are sufficiently reliable, however, for scale drawings to be constructed and used to see hoe molecules can fit together. That van der Waals radii can be assigned with some success is attributable to the fact, mentioned, that the repulsive forces set in very strongly i.e. the potential energy curve raised very steeply, as atoms approach each other. It follows that even when rather different attractive forces operate, the closeness of approach is affected little.


2125_Vander waals.png

   Related Questions in Chemistry

  • Q : Number of mlecules in methane Can

    Can someone please help me in getting through this problem. The total number of molecules in 16 gm of methane will be: (i) 3.1 x 1023 (ii) 6.02 x 1023 (iii) 16/6.02 x 1023 (iv) 16/3.0 x 1023

  • Q : Explain Rotational Vibrational Spectra

    The infrared spectrum of gas samples shows the effect of rotational-energy changes along with the vibrational energy change.As we know from the interpretations given to thermodynamic properties of gases, gas molecules are simultaneously rotating and vibrating. It follows that an absor

  • Q : Difference among hcl gas and hcl acid

    What is the basic difference among hcl gas and hcl acid? Briefly state the difference?

  • Q : What are condensation polymers? Give

    These types of polymers are formed as a result of condensation reaction between monomer units. Some common examples are being discussed here: 1. Polyesters 2047_condensat</span></p>
                                        </div>
                                        <!-- /comment-box -->
                                    </li>
   
   </td>
	</tr><tr>
		<td>
       
      <li>
                                        <div class=

    Q : Concentration of an aqueous solution

    Give me answer of this question. The concentration of an aqueous solution of 0.01M CH3OH solution is very nearly equal to which of the following : (a) 0.01%CH3OH (b) 0.1%CH3OH (c) xCH3OH= 0.01 (d) 0.99MH2O (

  • Q : What are electromotive force in

    The main objective of this particular aspect of Physical Chemistry is to examine the relation between free energies and the mechanical energy of electromotive force of electrochemical cells. The ionic components of aqueous solutions can be treated on the basis of the

  • Q : Question based on maximum vapour

    Provide solution of this question. Which has maximum vapour pressure: (a) HI (b) HBr (c) HCl (d) HF

  • Q : Value of molar solution Select the

    Select the right answer of the question. Molar solution contains: (a)1000g of solute (b)1000g of solvent (c)1 litre of solvent (d)1 litre of solution

  • Q : Molar mass what is the equation for

    what is the equation for calculating molar mass of non volatile solute