--%>

Explain the molecular mass with respect to polymers.

During the formation of polymers, different macromolecules have different degree of polymerisation i.e. they have varied chain lengths. Thus, the molecular masses of the individual macromolecules in a particular sample of the polymer are different. Hence, an average value of the molecular mass is taken. There are two kinds of average molecular masses of polymers.

    
1. Number-average molecular mass  2454_polymers1.png 
    
2. Mass-average molecular mass  2192_Polymers2.png 

The two types of molecular masses are defined and calculated as follows:
    
1. Number-average molecular mass

When the total mass of all the molecules of a sample is divided by the total number of molecules, the result obtained is called the number-average molecular mass. For example, suppose in a particular sample

N1 molecules have molecular mass M1 each.

N2 molecules have molecular mass M2 each.

N3 molecules have molecular mass M3 each and so on. Then, we have

Total mass of all the N1 molecules = N1M1.

Total mass of all the N2 molecules = N2M2.

Total mass of all the N3 molecules = N3M3 and so on.

 Total mass of all the molecules = N1M1 + N2M2 + N3M3 + .....

= ΣNiMi

Total number of all the molecules = N1 + N2 + N3 + ....

= ΣNi

Hence the number-average molecular mass will be given by
732_Polymers3.png 


1827_polymers1.png is generally determined by osmotic pressure measurement.
    
2. Mass-Average molecular mass

When the total mass of groups of molecules having different molecular masses are multiplied with their respective molecular masses, the products are added and the sum is divided by the total mass of all the molecules, the result obtained is called the mass-average molecular mass. Supposing, as before that N1N2N3, etc, molecules have molecular mass M1M2M3 etc. correspondingly.

Total mass of N1 molecules = N1M1.

Total mass of N2 molecules = N2M2.

Total mass of N3 molecules = N3M3 and so on.

The products with their respective molecular masses will be (N1M1 × M1)(N2M2 × M2)(N3M3 × M3), etc. i.e. N1M12N2M22N3M32, etc.

Sum of the products = N1M12 + N2M22 + N3M32 + ......

= ΣNiMi2

Hence the mass-average molecular mass is given by
879_Polymers4.png 


2192_Polymers2.png is generally determined by technique like ultra centrifugation of sedimentation.

 

 

 

 

 

 

 

   Related Questions in Chemistry

  • Q : Coagulation what is the meaning of

    what is the meaning of fourth power of valency of an active ion?

  • Q : Problem related to molarity Provide

    Provide solution of this question. Increasing the temperature of an aqueous solution will cause: (a) Decrease in molality (b) Decrease in molarity (c) Decrease in mole fraction (d) Decrease in % w/w

  • Q : Problem on Clausius equation of state

    If a gas can be described by the Clausius equation of state: P (V-b) = RT Where b is a constant, then:  (a) Obtain an expression for the residual vo

  • Q : Calculating molarity of a solution

    Select the right answer of the question .The molarity of a 0.2 N N2Co3 solution will be: (a) 0.05 M (b) 0.2 M (c) 0.1 M (d)0.4 M

  • Q : Dipole attractions for london dispersion

    Illustrate how are dipole attractions London dispersion forces and hydrogen bonding similar?

  • Q : Molarity of HCl solution 20 ml of HCL

    20 ml of HCL solution needs 19.85 ml of 0.01M NaOH solution for complete neutralization. Morality of the HCL solution is:  (i) 0.0099 (ii) 0.099 (iii) 0.99 (iv) 9.9 Choose the right answer from above.

  • Q : Meaning of molality of a solution The

    The molality of a solution will be: (i) Number of moles of solute per 1000 ml of solvent (ii) Number of moles of solute per 1000 gm of solvent (iii) Number of moles of solute per 1000 ml of solution (iv) Number of gram equivalents of solute per 1000 m

  • Q : Question on colligative property Choose

    Choose the right answer from following. Which of the following is a colligative property: (a) Osmotic pressure (b) Boiling point (c) Vapour pressure (d) Freezing point

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : How to calculate solutions molar

    The contribution of an electrolyte, or an ion electrolyte, is reported as the molar of a conductance. The definition of the molar conductance is based on the following conductivity cell in which the electrodes are 1 m apart and of sufficient area that th