--%>

Quantum Mechanical Operators

The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators.

1740_Quantum Machanics.png 
Or, with h for h/(2∏), as

2160_Quantum Mechanics.png 

For each of the set of functions that satisfies this equation, the quantity ε is the energy of the particle in the state corresponding to that solution function.

This equation, with which the energy corresponding to each allowed state is calculated, is just one of a number of equations that can be set up to calculate properties of quantum mechanical systems. All these expressions can be looked on as operator equations. Equation can be displayed to show this feature by writing it as

393_Quantum Mechanics1.png 

This expression in the square brackets is an example of an operator. This particular operator is one dimensional Hamiltonian operator. It or its two-or three-dimensional counterparts are given the symbol H. with this notation, equation can be written as

H ψ = ε ψ

Earlier  we looked for functions that solved the Schrodinger equation, such as acted on by the operator H, give back a constant times the function. In this equation is the energy corresponding to that function. Functions that satisfy equations such as are known as eigenfunctoins, and the values of the constant, such as ε of equation are eigenvalues.

The energies of a system are identified as the eigenvalues for the Hamiltonian operator. Any other observable quantity has its own operator. The operator approach is therefore quite general. When an operator from an observable quantity operates on the wave function for the system and gives a result which is constant times the wave function, that constant is the value of the observable quantity.

Normalization: wave functions can be imaginary or complex, i.e. they can involve I = √-1. Let us now allow ψ to be such a function. Its complex conjucate, obtained by replacing I wherever it appears by -i, is denoted ψ *. A complex ψ is normalized if

∫ ψ * ψ d 273_Quantum Mechanics8.png= 1 

Example: normalize the wave functions for a particle on a line given as ψ = (const) sin (n∏x/a).

Solution: a wave function in one dimension is normalized if ∫ ψ * ψ dx= 1. Here we require that

13_Quantum Mechanics2.png 

The integral can be simplified by introducing y = n∏x/a, so that

626_Quantum Mechanics3.png 

Now the integration result given in integral tables can be used to obtain

2132_Quantum Mechanics4.png 

= (a/(n∏)) ((n∏)/2)

= a/2


It follows that (const) = (2/a)1/2 and that the normalized wave function is    

ψ = (2/a)1/2 sin n∏x/a

Example: use the normalized wave function expression ψ = (2/a)1/2 sin (n∏x/a) for a particle-on-a-line and the position operator to obtain the expectation value for the position of a particle on a line segment.

Solution: the position operator is the x coordinate and the expectation value is given by equation here we have

2014_Quantum Mechanics5.png 

Substitution of y = n∏x/a converts this to 

1759_Quantum Mechanics6.png 

Use of the integration result from tables of integrals then gives

438_Quantum Mechanics7.png 

= 2a/(n2 ∏2 ) (n22/4)

= a/2


We have come, by this formal procedure, to the result that the average, or expectation, value for the position of a particle on a line segment is at the middle of the segment. This result is apparent from symmetry of the wave functions.

   Related Questions in Chemistry

  • Q : Water under pressure problem-henry law

    Can someone help me in going through this problem. The statement “When 0.003 moles of a gas are dissolved in 900 gm of water under a pressure of 1 atm, 0.006 moles will be dissolved under the pressure of 2 atm", signfies: (a)

  • Q : Calculating number of moles from

    Choose the right answer from following. If 0.50 mol of CaCl2 is mixed with 0.20 mol of Na3PO4, the maximum number of moles of Ca3 (PO2)2 which can be formed: (a) 0.70 (b) 0.50 (c) 0.20 (d) 0.10

  • Q : Calculating molarity of a solution

    Select the right answer of the question .The molarity of a 0.2 N N2Co3 solution will be: (a) 0.05 M (b) 0.2 M (c) 0.1 M (d)0.4 M

  • Q : Isotonic Solutions Which one of the

    Which one of the following pairs of solutions can we expect to be isotonic at the same temperature:(i) 0.1M Urea and 0.1M Nacl  (ii) 0.1M Urea and 0.2M Mgcl2  (iii) 0.1M Nacl and 0.1M Na2SO4  (iv) 0.1M Ca(NO3<

  • Q : Problem on decomposition reaction

    Nitrogen tetroxide (melting point: -11.2°C, normal boiling point 21.15°C) decomposes into nitrogen dioxide according to the following reaction: N2O4(g) ↔ 2 NO2(g)<

  • Q : What are isotonic and hypotonic

    The two solutions which are having equivalent osmotic pressure are called isotonic solutions. The isotonic solutions at the same temperature also have same molar concentration. If we have solutions having different osmotic pressures then the solution having different

  • Q : What are biodegradable polymers?

      These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biod

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : What do you mean by the term tripod

    What do you mean by the term tripod? Also state its uses?

  • Q : Freezing point of equimolal aqueous

    The freezing point of equi-molal aqueous solution will be maximum for:            (a) C6H5NH3+Cl-(aniline hydrochloride)  (b) Ca(NO3