--%>

Quantum Mechanical Operators

The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators.

1740_Quantum Machanics.png 
Or, with h for h/(2∏), as

2160_Quantum Mechanics.png 

For each of the set of functions that satisfies this equation, the quantity ε is the energy of the particle in the state corresponding to that solution function.

This equation, with which the energy corresponding to each allowed state is calculated, is just one of a number of equations that can be set up to calculate properties of quantum mechanical systems. All these expressions can be looked on as operator equations. Equation can be displayed to show this feature by writing it as

393_Quantum Mechanics1.png 

This expression in the square brackets is an example of an operator. This particular operator is one dimensional Hamiltonian operator. It or its two-or three-dimensional counterparts are given the symbol H. with this notation, equation can be written as

H ψ = ε ψ

Earlier  we looked for functions that solved the Schrodinger equation, such as acted on by the operator H, give back a constant times the function. In this equation is the energy corresponding to that function. Functions that satisfy equations such as are known as eigenfunctoins, and the values of the constant, such as ε of equation are eigenvalues.

The energies of a system are identified as the eigenvalues for the Hamiltonian operator. Any other observable quantity has its own operator. The operator approach is therefore quite general. When an operator from an observable quantity operates on the wave function for the system and gives a result which is constant times the wave function, that constant is the value of the observable quantity.

Normalization: wave functions can be imaginary or complex, i.e. they can involve I = √-1. Let us now allow ψ to be such a function. Its complex conjucate, obtained by replacing I wherever it appears by -i, is denoted ψ *. A complex ψ is normalized if

∫ ψ * ψ d 273_Quantum Mechanics8.png= 1 

Example: normalize the wave functions for a particle on a line given as ψ = (const) sin (n∏x/a).

Solution: a wave function in one dimension is normalized if ∫ ψ * ψ dx= 1. Here we require that

13_Quantum Mechanics2.png 

The integral can be simplified by introducing y = n∏x/a, so that

626_Quantum Mechanics3.png 

Now the integration result given in integral tables can be used to obtain

2132_Quantum Mechanics4.png 

= (a/(n∏)) ((n∏)/2)

= a/2


It follows that (const) = (2/a)1/2 and that the normalized wave function is    

ψ = (2/a)1/2 sin n∏x/a

Example: use the normalized wave function expression ψ = (2/a)1/2 sin (n∏x/a) for a particle-on-a-line and the position operator to obtain the expectation value for the position of a particle on a line segment.

Solution: the position operator is the x coordinate and the expectation value is given by equation here we have

2014_Quantum Mechanics5.png 

Substitution of y = n∏x/a converts this to 

1759_Quantum Mechanics6.png 

Use of the integration result from tables of integrals then gives

438_Quantum Mechanics7.png 

= 2a/(n2 ∏2 ) (n22/4)

= a/2


We have come, by this formal procedure, to the result that the average, or expectation, value for the position of a particle on a line segment is at the middle of the segment. This result is apparent from symmetry of the wave functions.

   Related Questions in Chemistry

  • Q : Sugar solution The solution of sugar in

    The solution of sugar in water comprises: (i) Free atoms (ii) Free ions (iii) Free molecules (iv) Free atom and molecules. Choose the right answer from the above.

  • Q : Volume hydrogen peroxide Choose the

    Choose the right answer from following. The normality of 10 lit. volume hydrogen peroxide is: (a) 0.176 (b) 3.52 (c) 1.78 (d) 0.88 (e)17.8

  • Q : Calculating molarity of a solution

    Select the right answer of the question .The molarity of a 0.2 N N2Co3 solution will be: (a) 0.05 M (b) 0.2 M (c) 0.1 M (d)0.4 M

  • Q : Biodegradable polymers what are the

    what are the examples of biodegradable polymers

  • Q : What are aliphatic amines and its

    In common system, the aliphatic amines are named by using prefix for alkyl group followed by the word amine.In case of mixed amines, the name of alkyl groups are arranged in alphabetical order. This is followed by the word amine. However, for simple secondary or tertiary amines anothe

  • Q : Examples of reversible reaction

    Describe some examples of a reversible reaction?

  • Q : Number of mlecules in methane Can

    Can someone please help me in getting through this problem. The total number of molecules in 16 gm of methane will be: (i) 3.1 x 1023 (ii) 6.02 x 1023 (iii) 16/6.02 x 1023 (iv) 16/3.0 x 1023

  • Q : Problem on endothermic or exothermic At

    At low temperatures, mixtures of water and methane can form a hydrate (i.e. a solid containing trapped methane). Hydrates are potentially a very large source of underground trapped methane in the pole regions but are a nuisance when they form in pipelines and block th

  • Q : What do you mean by the term hydra What

    What do you mean by the term hydra? Briefly define it.

  • Q : Molarity what is the molarity of the

    what is the molarity of the solution prepared by dissolving 75.5 g of pure KOH in 540 ml of solution