--%>

Quantum Mechanical Operators

The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators.

1740_Quantum Machanics.png 
Or, with h for h/(2∏), as

2160_Quantum Mechanics.png 

For each of the set of functions that satisfies this equation, the quantity ε is the energy of the particle in the state corresponding to that solution function.

This equation, with which the energy corresponding to each allowed state is calculated, is just one of a number of equations that can be set up to calculate properties of quantum mechanical systems. All these expressions can be looked on as operator equations. Equation can be displayed to show this feature by writing it as

393_Quantum Mechanics1.png 

This expression in the square brackets is an example of an operator. This particular operator is one dimensional Hamiltonian operator. It or its two-or three-dimensional counterparts are given the symbol H. with this notation, equation can be written as

H ψ = ε ψ

Earlier  we looked for functions that solved the Schrodinger equation, such as acted on by the operator H, give back a constant times the function. In this equation is the energy corresponding to that function. Functions that satisfy equations such as are known as eigenfunctoins, and the values of the constant, such as ε of equation are eigenvalues.

The energies of a system are identified as the eigenvalues for the Hamiltonian operator. Any other observable quantity has its own operator. The operator approach is therefore quite general. When an operator from an observable quantity operates on the wave function for the system and gives a result which is constant times the wave function, that constant is the value of the observable quantity.

Normalization: wave functions can be imaginary or complex, i.e. they can involve I = √-1. Let us now allow ψ to be such a function. Its complex conjucate, obtained by replacing I wherever it appears by -i, is denoted ψ *. A complex ψ is normalized if

∫ ψ * ψ d 273_Quantum Mechanics8.png= 1 

Example: normalize the wave functions for a particle on a line given as ψ = (const) sin (n∏x/a).

Solution: a wave function in one dimension is normalized if ∫ ψ * ψ dx= 1. Here we require that

13_Quantum Mechanics2.png 

The integral can be simplified by introducing y = n∏x/a, so that

626_Quantum Mechanics3.png 

Now the integration result given in integral tables can be used to obtain

2132_Quantum Mechanics4.png 

= (a/(n∏)) ((n∏)/2)

= a/2


It follows that (const) = (2/a)1/2 and that the normalized wave function is    

ψ = (2/a)1/2 sin n∏x/a

Example: use the normalized wave function expression ψ = (2/a)1/2 sin (n∏x/a) for a particle-on-a-line and the position operator to obtain the expectation value for the position of a particle on a line segment.

Solution: the position operator is the x coordinate and the expectation value is given by equation here we have

2014_Quantum Mechanics5.png 

Substitution of y = n∏x/a converts this to 

1759_Quantum Mechanics6.png 

Use of the integration result from tables of integrals then gives

438_Quantum Mechanics7.png 

= 2a/(n2 ∏2 ) (n22/4)

= a/2


We have come, by this formal procedure, to the result that the average, or expectation, value for the position of a particle on a line segment is at the middle of the segment. This result is apparent from symmetry of the wave functions.

   Related Questions in Chemistry

  • Q : Amines why o-toluidine is a weaker base

    why o-toluidine is a weaker base than aniline?

  • Q : Vapour pressure of methanol in water

    Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water

  • Q : How to establish nomenclature for

    In the common chemistry terminologies, aliphatic halogen derivatives are named as alkyl halides. The words, n-, sec-, tert-, iso-, neo-, and amyl are

  • Q : Strength of the Hydrochloric acid

    Provide solution of this question. 1.0 gm of pure calcium carbonate was found to need 50 ml of dilute HCL for complete reaction. The strength of the HCL solution is specified by : (a) 4 N (b) 2 N (c) 0.4 N (d) 0.2 N

  • Q : Relationship between Pressure and

    The pressure-temperature relation for solid-vapor or liquid vapor equilibrium is expressed by the Clausis-Clapeyron equation.We now obtain an expression for the pressure-temperature dependence of the state of equilibrium between two phases. To be specific,

  • Q : What are homogenous catalyst? Give few

    When a catalyst mixes homogeneously with the reactants and forms a single phase, the catalyst is said to be homogeneous and this type of catalysis is called homogeneous catalysis. Some more examples of homogeneous catalysis are:    SO2

  • Q : Problem based on molarity Select the

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Show your calculations Superphosphate

    Superphosphate has the formulae: CaH4 (PO4)2H2).  Calculate the percentage of phosphorus in this chemical.  Show your calculations  (around ten lines);  also Work out how to make up a nutrient mixtur

  • Q : Problem on melting of ice A) It has

    A) It has been suggested that the surface melting of ice plays a role in enabling speed skaters to achieve peak performance. Carry out the following calculation to test this hypothesis. Suppose that the width of the skate in contact with the ice has been reduced by sh

  • Q : Finding strength of HCL solution Can

    Can someone please help me in getting through this problem. 1.0 gm of pure calcium carbonate was found to require 50 ml of dilute  HCL for complete reaction. The strength of the HCL  solution is given by: (a) 4 N  (b) 2 N  (c) 0.4 N  (d) 0.2 N