Describe Point Groups.

For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.

It is clear from the examples that most molecules have several elements of symmetry. The H2Omolecule, for example, has the symmetry elements E, C2, σvand σ'vthe sets of symmetry operations associated with such collections associated with such collections of symmetry elements are referred to as point groups. The mathematical implications of the word "group" are treated in the next section. The adjective "point" is used because the symmetry elements that are dealt with here leave a point of, or in, the molecule fixed in space. (point groups are in contrast to space groups. The latter are the collections of symmetry operations for which the operation consists of a transition of a unit cell to a new location in the crystal).
 
Now let us sample the variety of collections of symmetry elements and their associated symmetry operations. Each collections of symmetry operations constitutes a point group, and each point group is given a symbol. The symbol, written in boldface type, is usually based on the principle elements of symmetry of that point group.

2062_Point group.png 

Simple symmetries: we begin the list of table with two point groups that are found when molecules with minimal symmetry are considered. For example, the bent molecule NOCl has only a plane of symmetry and the staggered molecule H2O has only a C2 axis of symmetry. Each, of course, has the identity symmetry element. Thus the point groups with symbols Cs and C2 which these examples suggest include only the identity operation and one other symmetry operation.

Single axis of symmetry: next we come to five collections of symmetry operations when we consider molecules with a single axis of symmetry. (This axis might have several rotational-symmetry operations associated with it.) The symbols for the point groups suggested by these molecules and the symmetry operations that constitute these groups in each of these point groups, the axis of rotation is taken to be the z axis. For a twofold axis the associated symmetry operation is a rotation by ½ revolutions. Since a threefold axis has two symmetry operations associated with it, the entry 2C3 (z) appears whenever there is a threefold axis. The symmetry operations associated with C4 indicated by 224(z) to indicate successive rotations by ¼revolutions. The planes associated with the symmetry operation of reflection are identified by thev, h, and d subscripts and, where appropriate, reference to the x, y, z coordinate system.

Principal and secondary axes: a set of rather more complex point groups, which will not br dealt with in detail. Each has the principal point group symbol D. the symmetry elements on which these point groups are based include axes that lie perpendicular to each other. The point groups for these collections of symmetry operations are referred to as the dihedral groups. Each point group symbol D has a subscript that shows the highest order rotation and suggests the types of planes of symmetry present.

Multiple principle axes: the tetrahedral molecules, such as CH4, and the octahedral molecules and ions, such as SF6, suggest two additional point groups, which, in spite of their complexity, should be introduced. Illustrations of the symmetry elements of such molecules are the symmetry operations of the tetrahedral point group Td and the octahedral point group OH, suggested by the collections of symmetry elements.

A total of about 27 point groups are found if the symmetry of all important molecular structures is investigated. Thus it provides only a sampling of important points groups. Some of the information will be used as individual molecules are studied. You need not attempt to master the table in advance of these studies.

The symmetry of a molecule can be described by specifying the symmetry elements of the molecule. Alternatively, and more simply, one can state the point group to which the molecule belongs. Thus, the entire symmetry of the H2O molecule is indicated by stating that the H2Omolecule belongs to the C2point group. The symmetry of the CH4 molecule is indicated by saying that it belongs to the Td point group, and so forth.

Point groups have not been introduced simply to make such compact statements. Points groups are special combinations of symmetry operations, as you explore the special nature of these combinations we can learn about the symmetry features of the wave functions for the electrons of the atoms of the molecules, the wave functions for the electrons of the molecules, and the vibrations of the molecules belonging to any point group. 

   Related Questions in Chemistry

  • Q : Negative deviation Which one of the

    Which one of the following non-ideal solutions shows the negative deviation: (a) CH3COCH3 + CS2   (b) C6H6 + CH3COCH3   (c) CCl4 + CHCl3  

  • Q : Explain gels and its various categories.

    Certain sols have the property of setting to a semi-solid, jelly-like form by enclosing the entire amount of liquid within itself when they are present at high concentrations. This process is called gelation and colloidal systems with jelly-like appearance are known as gels. Some common examples

  • Q : Dependcy of colligative properties

    Colligative properties of a solution depends upon: (a) Nature of both solvent and solute (b) The relative number of solute and solvent particles (c) Nature of solute only (d) Nature of solvent only

  • Q : Production of alcoholic drinks give all

    give all physical aspects in the production of alcohol

  • Q : What is adsorption and its examples. In

    In a liquid a solid substance a molecule present within the bulk of the substance is being attracted infirmly from all sides by the neighbouring molecules. Hence there is no bet force acting on the molecule or there are no unbalanced forces of the molecule. On the oth

  • Q : HCl polarity Illustrate HCl is polar or

    Illustrate HCl is polar or non-polar?

  • Q : Molarity of acid solution If 20ml of

    If 20ml of 0.4N, NaoH solution completely neutralises 40ml of a dibasic acid. The molarity of the acid solution is: (a) 0.1M (b) 0.2M  (c) 0.3M (d) 0.4M Choose the right answer fron above.

  • Q : Molecular basis of third law. The

    The molecular, or statistical, basis of the third law can be seen by investigating S = k in W.The molecular deductions of the preceding sections have led to the same conclusions as that stated in the third law of thermodynamics, namely, that a value can be

  • Q : What do you mean by the term enzymes

    What do you mean by the term enzymes? Briefly illustrate it.

  • Q : Question based on lowest vapour pressure

    Give me answer of this question. Among the following substances the lowest vapour pressure is exerted by: (a) Water (b) Mercury (c) Kerosene (d) Rectified spirit

©TutorsGlobe All rights reserved 2022-2023.