--%>

Liquid surfaces

The surface between a liquid and a vapour distinguishes these fluids.


The surface tension of liquids can be looked upon as that the property which draws a liquid together and forms a liquid vapour interface, therefore, distinguishing liquids from gases.

The molecular basis for this property is suggested, where the unbalanced attractions experienced by the surface molecules are shown to lead to the amount of free liquid will pull it together to form a less spherical drop. The surface layer can be expected to have properties that differ from those of the bulk of the liquid.

The surface tension of the liquid can be defined with reference to where it is most easily pictured is a wire frame, arranged as a piston, used to expand a soap film. The definition also applies to the mechanically more difficult systems where the film is replaced by a layer of liquid of appreciable thickness. The force required stretching the film or liquid vapour is proportional to the length l of the piston. Since there are two surfaces of the film, the total length of the film is 2l, and the proportionality equation:

ƒ = γ(2l) can be written.

The proportionality constant γ is known as the surface tension, and according to the above equation it can be looked upon as the force by a surface of unit length.
Of more general use is the relation between surface tension and surface energy. The mechanical energy required to expand the surfaces by moving the piston a distance dx is f dx, or 2l dx. Since the area of new surface is 2l dx, the result:

Mechanical energy/change of surface area = 2lγ dx/ 2l dx = γ, can be obtained. This expression shows that the surface tension can be interpreted as the energy per unit surface area and that it is a mechanical rather than thermal energy. In these terms, the tendency of a surface to reduce its area is just another example of a system tending toward an arrangement of low free energy.

Surface tension of some liquids, N m-1:

Liquid 20°C 60°C 100°C Liquid t, °C Surface tension
H2O 0.07275 0.06618 0.05885 Hg 0 0.480
C2H5OH 0.0223 0.0223 0.0190 Ag 970 0.800
C6H6 0.0289 0.0237   NaCl 1080 0.094
(C2H5)2O 0.0170   0.0080 AgCl 452 0.125


Example: compare the heights to which water and carbon tetrachloride will rise as a result of capillary action in a tube with an internal diameter of 0.1 mm. at 20°C the surface tensions of water and carbon tetrachloride, respectively, are 0.0727 and 0.0268 N m-1, and their densities are 0.998 and 1.595 g mL-1.

Solution: 
we use to obtain:

L = 2 γ/rpg


The radius of the cube is 0.5 mm = 0.5 × 10-4 m, and the densities are 9.98 × 103 and 1.598 × 103 kg m-3.

For water: l = 2 (0.0727 N m-1)/(0.5 × 10-4 m) (9.98 × 103 kg m-3) (9.81 m s-1)

= 0.0297 m = 29.7 mm

For CCl4: l = 2 (0.0268 N m-1)/(0.5 × 10-4 m) (1.595 × 103 kg m-3) (9.81 m s-2)

= 0.00685 m = 6.85 mm.

   Related Questions in Chemistry

  • Q : What is ortho effect? Orthosubstituted

    Orthosubstituted anilines are generally weaker bases than aniline irrespective of the electron releasing or electron withdrawing nature of the substituent. This is known as ortho effect and may probably be due to combined electronic and steric factors.The overall basic strength of ort

  • Q : Quastion of finding vapour pressure

    Vapour pressure of CCl425Degree C at is 143mm of Hg0.5gm of a non-volatile solute (mol. wt. = 65) is dissolved in 100ml CCl4 .Find the vapour pressure of the solution (Density of CCl4 = = 1.58g /cm2): (a)141.43mm (b)

  • Q : Dipole moment of chlorooctane

    Illustrate the dipole moment of chlorooctane?

  • Q : Procedure for separating the components

    Briefly describe the procedure for separating the components of the gun-powder?

  • Q : Degree of dissociation The degree of

    The degree of dissociation of Ca(No3)2 in a dilute aqueous solution containing 14g of the salt per 200g of water 100oc is 70 percent. If the vapor pressure of water at 100oc is 760 cm. Calculate the vapor pr

  • Q : Decision about dipole moment is present

    How can you decide if there is a dipole moment or not?

  • Q : Basicity order order of decreasing

    order of decreasing basicity of urea and its substituents

  • Q : Explain Polyatomic Vibrational Spectra

    Polyatomic molecules vibrate in a number of ways, and some of these vibrations can be studied by infrared absorption spectroscopy and some by Raman spectroscopy. The characters of transformation matrices for all 3n translation rotation vibration motio

  • Q : Molarity 20mol of hcl solution requires

    20mol of hcl solution requires 19.85ml of 0.01 M NAOH solution for complete neutralisation. the molarity of hcl solution

  • Q : Homework Silicon has three naturally

    Silicon has three naturally occurring isotopes. 28Si, mass = 27.976927; 29Si, mass = 28.976495; 30Si, mass = 29.973770 and 3.10% abundance. What is the abundance of 28Si?