--%>

Liquid surfaces

The surface between a liquid and a vapour distinguishes these fluids.


The surface tension of liquids can be looked upon as that the property which draws a liquid together and forms a liquid vapour interface, therefore, distinguishing liquids from gases.

The molecular basis for this property is suggested, where the unbalanced attractions experienced by the surface molecules are shown to lead to the amount of free liquid will pull it together to form a less spherical drop. The surface layer can be expected to have properties that differ from those of the bulk of the liquid.

The surface tension of the liquid can be defined with reference to where it is most easily pictured is a wire frame, arranged as a piston, used to expand a soap film. The definition also applies to the mechanically more difficult systems where the film is replaced by a layer of liquid of appreciable thickness. The force required stretching the film or liquid vapour is proportional to the length l of the piston. Since there are two surfaces of the film, the total length of the film is 2l, and the proportionality equation:

ƒ = γ(2l) can be written.

The proportionality constant γ is known as the surface tension, and according to the above equation it can be looked upon as the force by a surface of unit length.
Of more general use is the relation between surface tension and surface energy. The mechanical energy required to expand the surfaces by moving the piston a distance dx is f dx, or 2l dx. Since the area of new surface is 2l dx, the result:

Mechanical energy/change of surface area = 2lγ dx/ 2l dx = γ, can be obtained. This expression shows that the surface tension can be interpreted as the energy per unit surface area and that it is a mechanical rather than thermal energy. In these terms, the tendency of a surface to reduce its area is just another example of a system tending toward an arrangement of low free energy.

Surface tension of some liquids, N m-1:

Liquid 20°C 60°C 100°C Liquid t, °C Surface tension
H2O 0.07275 0.06618 0.05885 Hg 0 0.480
C2H5OH 0.0223 0.0223 0.0190 Ag 970 0.800
C6H6 0.0289 0.0237   NaCl 1080 0.094
(C2H5)2O 0.0170   0.0080 AgCl 452 0.125


Example: compare the heights to which water and carbon tetrachloride will rise as a result of capillary action in a tube with an internal diameter of 0.1 mm. at 20°C the surface tensions of water and carbon tetrachloride, respectively, are 0.0727 and 0.0268 N m-1, and their densities are 0.998 and 1.595 g mL-1.

Solution: 
we use to obtain:

L = 2 γ/rpg


The radius of the cube is 0.5 mm = 0.5 × 10-4 m, and the densities are 9.98 × 103 and 1.598 × 103 kg m-3.

For water: l = 2 (0.0727 N m-1)/(0.5 × 10-4 m) (9.98 × 103 kg m-3) (9.81 m s-1)

= 0.0297 m = 29.7 mm

For CCl4: l = 2 (0.0268 N m-1)/(0.5 × 10-4 m) (1.595 × 103 kg m-3) (9.81 m s-2)

= 0.00685 m = 6.85 mm.

   Related Questions in Chemistry

  • Q : What are lattices and unit cells? The

    The repeating, atomic level structure of a crystal can be represented by a lattice and by the repeating unit of the lattice, the unit cell.It was apparent very early in the study of crystals that the shapes of crystals stem from an ordered array of smaller

  • Q : How reactive is Trimethylindium towards

    Illustrate the reason, how reactive is Trimethylindium towards oxygen and water?

  • Q : What is electrolysis? Explain with

    Passage of a current through a solution can produce an electrolysis reaction.Much additional information on the properties of the ions in an aqueous solution can be obtained from studies of the passage of a direct current (dc) through a cell containing a s

  • Q : Define thermal energy The thermal part

    The thermal part of the internal energy and the enthalpy of an ideal gas can be given a molecular level explanation. All the earlier development of internal energy and enthalpy has been "thermodynamic". We have made no use o

  • Q : Problem on decinormal Select the right

    Select the right answer of the question. How much water is required to dilute 10 ml of 10 N hydrochloric acid to make it exactly decinormal (0.1 N): (a) 990 ml (b) 1000 ml (c) 1010 ml (d) 100 ml

  • Q : Neutralization of sodium hydroxide How

    How much of NaOH is needed to neutralise 1500 cm3 of 0.1N HCl (given = At. wt. of Na =23): (i) 4 g  (ii) 6 g (iii) 40 g  (iv) 60 g

  • Q : Examples of reversible reaction

    Describe some examples of a reversible reaction?

  • Q : Solubility of a gas The solubility of a

    The solubility of a gas in water depends on: (a) Nature of the gas (b) Temperature (c) Pressure of the gas (d) All of the above. Can someone help me in finding out the right answer.

  • Q : Problem on normality Help me to solve

    Help me to solve this problem. 0.5 M of H2AO4 is diluted from 1 lire to 10 litre, normality of resulting solution is : (a)1 N (b) 0.1 N (c)10 N (d)11 N

  • Q : Ddd 4) The addition of S2- ion to

    4) The addition of S2- ion to Fe(OH)2(s). Explain why the addition of S2- ion to Cr(OH)3(s) does not result in the formation of Cr2S3(s).