--%>

molarity

20mol of hcl solution requires 19.85ml of 0.01 M NAOH solution for complete neutralisation. the molarity of hcl solution

   Related Questions in Chemistry

  • Q : How to test a gas to see if it was

    Write a short note to describe how to test a gas to see if it was hydrogen or not?

  • Q : Units of Measurement Unit of

      Unit of measurement- These are also some systems for units:      (1) 

  • Q : Hybridization Atomic orbitals can be

    Atomic orbitals can be combined, in a process called hybridization, to describe the bonding in polyatomic molecules. Descriptions of the bonding in CH4 can be used to illustrate the valence bond procedure. We must arrive a

  • Q : How haloalkanes are prepared from

    Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.    From alkanesWhen alkanes are treated with halogens, chlo

  • Q : Cations Explain how dissolving the

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : Number of mlecules in methane Can

    Can someone please help me in getting through this problem. The total number of molecules in 16 gm of methane will be: (i) 3.1 x 1023 (ii) 6.02 x 1023 (iii) 16/6.02 x 1023 (iv) 16/3.0 x 1023

  • Q : Problem based on mole concept Choose

    Choose the right answer from following. An aqueous solution of glucose is 10% in strength. The volume in which mole of it is dissolved will be : (a) 18 litre (b) 9 litre (c) 0.9 litre (d) 1.8 litre

  • Q : Question on molality Provide solution

    Provide solution of this question. Which of the following concentration factor is affected by change in temperature : (a)Molarity (b) Molality (c)Mole fraction (d)Weight fraction

  • Q : Concentration of an aqueous solution

    Give me answer of this question. The concentration of an aqueous solution of 0.01M CH3OH solution is very nearly equal to which of the following : (a) 0.01%CH3OH (b) 0.1%CH3OH (c) xCH3OH= 0.01 (d) 0.99MH2O (

  • Q : Explain Second Order Rate Equations.

    Integration of the second order rate equations also produces convenient expressions for dealing with concentration time results.A reaction is classified as second order if the rate of the reaction is proportional to the square of the concentration of one o