--%>

Explain Polyatomic Vibrational Spectra

Polyatomic molecules vibrate in a number of ways, and some of these vibrations can be studied by infrared absorption spectroscopy and some by Raman spectroscopy. 

The characters of transformation matrices for all 3n translation rotation vibration motions of a molecule can be deduced by using the three Cartesian coordinates at each atom as a basis. TheH2O example led us to except two vibrations of symmetry A1 and one of symmetry B1

As a second example worked out in vibrations of these types are repeated with the symmetry fo the molecule is C3v. the 3n Cartesian displacement vectors are shown in the recipes for the characters given in the table under:

215_polyatomic vibrational spectra.png 

The CH3Cl molecule has three totally symmetric A1 vibrations and three pairs of doubly degenerate E vibrations. These can be pictured and identified with absorptions.

The A1 vibrations have associated with them an oscillating dipole that is directed the unique z, axis. Such vibrations of symmetric top molecules are described as parallel.

Symmetry and infrared and roman spectra: oscillating dipole components have the same symmetry properties as the x, y, z vectors displayed alongside character tables. The rows in which x, y, zoccurs give the symmetry types for the three components of the oscillating dipole. In both theH2O and CH3Cl examples, all vibrations are infrared active. In more symmetric molecules some vibrations will have a symmetry type other than those symmetric corresponding to the rows containing the vectors. Such vibrations will be infrared inactive they will produce no absorption of radiation.

Symmetry considerations also lead to conclusions about the vibrations of symmetric molecules that are Roman-active. The distinction between Raman and infrared activity can most easily be seen by considering a molecule with a center o symmetry. A simple example is provided by the CO2molecule vibrations are only those vibrations which remove the symmetry with respect to the center of symmetry can create an oscillating dipole moment. Thus only the second and third vibrations are infrared active. Raman activity can be deduced by seeing which distortions could lead to an oscillating polarizability. You can assume that stretching a bond changes the polarizability in one way and compressing it changes the polarizability to the same extent but in the opposite way. Then you expect only the first vibration to be Raman-active.

The deduction illustrates a general rule. If a molecule has a center of symmetry, only those vibrations which are antisymmetric with respect to the center can be Raman-active.

Characteristic frequencies: a more detailed analysis of the dependence of polarizability on molecular distortions would show that Raman activity occurs only for vibrations with the symmetry of any type of square or cross product terms of character tables. You can use this guide and the character table. 

In a practical use of great value, particularly in organic chemistry, the infrared absorption spectrum of a large molecule is used to identify the compound or to indicate the presence of certain groups in the molecule. Bonds or groups within a molecule sometimes vibrate with a frequency, i.e. have an energy level pattern with a spacing that is little affected by the rest of the molecule. Absorption at a frequency characteristic of a particular group can then be taken as an indication of the presence of that group in the compound being studied.

An even simpler use of vibrational spectra consists of a compound by matching its spectrum to that of known sample. Large molecules have such complicated spectra can be taken as a sure indication of identical compounds. Thus, although for large molecules the complete vibrational spectrum can be understood in terms of the nature of the vibrations, there are many uses in which such spectra can be put.

   Related Questions in Chemistry

  • Q : Calculating Formulae Superphosphate has

    Superphosphate has the formula CaH4(PO4)2 H2O, what is the calculation to get the percentage of Phosphorus, I need to show the calculation. I know it is 30.9737622 u in weight and 2 atoms of the formula, but not sure how to work the calculation backwards.

  • Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : Define Bond Energies - Bond Charges

    Energy changes in some chemical reactions can be used to deduce the energies of chemical bonds. Our understanding of the molecular basis of thermodynamic properties is extended when we ask why the enthalpy change for a reaction is what it is. We deduce,

  • Q : Moles of chloride ion Select the right

    Select the right answer of the question. A solution of CaCl2 is 0.5 mol litre , then the moles of chloride ion in 500ml will be : (a) 0.25 (b) 0.50 (c) 0.75 (d)1.00

  • Q : Group IV Cations Chromium(III)

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer.

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : Molarity of Barium hydroxide 25 ml of a

    25 ml of a solution of barium hydroxide on titration with 0.1 molar solution of the hydrochloric acid provide a litre value of 35 ml. The molarity of barium hydroxide solution will be: (i) 0.07 (ii) 0.14 (iii) 0.28 (iv) 0.35

  • Q : Molecular weight of solute Select right

    Select right answer of the question. A dry air is passed through the solution, containing the 10 gm of solute and 90 gm of water and then it pass through pure water. There is the depression in weight of solution wt by 2.5 gm and in weight of pure solvent by 0.05 gm. C

  • Q : Acid value definition The acid value

    The acid value definition is the number milligrams of KOH needed to neutralize the acid present in one gram oil and fats however why not employ NaOH for the neutralization?

  • Q : Question related to molarity Help me to

    Help me to go through this problem. Molarity of a solution containing 1g NaOH in 250ml of solution: (a) 0.1M (b) 1M (c) 0.01M (d) 0.001M