--%>

How to establish nomenclature for halides?

In the common chemistry terminologies, aliphatic halogen derivatives are named as alkyl halides. The words, n-, sec-, tert-, iso-, neo-, and amyl are usually used in written in the common names. In IUPAC system, they are considered as derivatives of corresponding alkanes and are named as haloalkanes. It may be noted that the common name of any alkyl halide is written as two separate words whereas the IUPAC name of the alkyl halide is written as one word.

The dihalogen derivatives having same type of halogen atoms on the same carbon are known as germinal dihalides and are assigned common name alkylidene halides or alkylidene dihalides.

The dihalogen derivatives having the two similar halogen atoms on adjacent carbon atoms are known as vicinal dihalides and are assigned common name alkylene or alkylene dihalides.

Trihalomethnanes are called haloforms in trivial system.

Fully halogenated hydrocarbons are known as perhalohydrocarbons. For example, C2Cl6 is known as percholoroethane.

Haloarenes are named by prefixing the halogen and its position, if necessary, to the name of the parent aromatic compound.

In writing the common names, the relative positions of the substituents at 1, 2-; 1, 3- and 1, 4- positions are indicated by prefixes ortho (o-), meta (m-) and para (p-), respectively. 

Isomerism in haloalkanes

Haloalkanes can exhibit the following kinds of isomerism:
    
Chain isomerism

The haloalkanes with four or more carbon atoms exhibit this kind of isomerism. For example,

1267_halides.png 
    
Position isomerism

The haloalkanes with three or more carbons show this kind of isomerism.

For example C3H7Br has two position isomers.

863_halides1.png

   Related Questions in Chemistry

  • Q : Molecular Properties Symmetry Molecular

    Molecular orbitals and molecular motions belong to certain symmetry species of the point group of the molecule.Examples of the special ways in which vectors or functions can be affected by symmetry operations are illustrated here. All wave functions soluti

  • Q : Solution problem What is the correct

    What is the correct answer. To made a solution of concentration of 0.03 g/ml of AgNO3, what quantity of AgNO3 must be added in 60 ml of solution: (a) 1.8  (b) 0.8  (c) 0.18  (d) None of these

  • Q : Explain polyhalogen compounds with

    Carbon compounds containing more than one halogen atom are called polyhalogen compounds. Most of these compounds are valuable in industry and agriculture. Some important polyhalogen compounds are described as follows:

    Q : Vander Waals forces Wax is an example

    Wax is an example of: (a) Ionic crystal  (b) Covalent crystal  (c) Metallic crystal  (d) Molecular crystalAnswer: (d) Iodine crystals are molecular crystals, in which constituent particles are molecules having inter particle

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Molarity of solution Help me to go

    Help me to go through this problem. When 7.1gm Na2SO4 (molecular mass 142) dissolves in 100ml H2O , the molarity of the solution is: (a) 2.0 M (b) 1.0 M (c) 0.5 M (d) 0.05 M

  • Q : Explain the preparation of phenols. The

    The methods used for the preparation of phenols are given below:    From aryl sulphonic acids

  • Q : Calculating Formulae Superphosphate has

    Superphosphate has the formula CaH4(PO4)2 H2O, what is the calculation to get the percentage of Phosphorus, I need to show the calculation. I know it is 30.9737622 u in weight and 2 atoms of the formula, but not sure how to work the calculation backwards.

  • Q : Explain vapour pressure of liquid

    Liquid solutions are obtained when the solvent is liquid. The solute can be a gas, liquid or a solid. In this section we will discuss the liquid solutions containing solid or liquid solutes. In such solutions the solute may or may not be volatile. We shall limit our d

  • Q : Benzoic acid is weaker than paranitro

    Briefly state that Benzoic acid is weaker than paranitro benzoic acid?