--%>

How to establish nomenclature for halides?

In the common chemistry terminologies, aliphatic halogen derivatives are named as alkyl halides. The words, n-, sec-, tert-, iso-, neo-, and amyl are usually used in written in the common names. In IUPAC system, they are considered as derivatives of corresponding alkanes and are named as haloalkanes. It may be noted that the common name of any alkyl halide is written as two separate words whereas the IUPAC name of the alkyl halide is written as one word.

The dihalogen derivatives having same type of halogen atoms on the same carbon are known as germinal dihalides and are assigned common name alkylidene halides or alkylidene dihalides.

The dihalogen derivatives having the two similar halogen atoms on adjacent carbon atoms are known as vicinal dihalides and are assigned common name alkylene or alkylene dihalides.

Trihalomethnanes are called haloforms in trivial system.

Fully halogenated hydrocarbons are known as perhalohydrocarbons. For example, C2Cl6 is known as percholoroethane.

Haloarenes are named by prefixing the halogen and its position, if necessary, to the name of the parent aromatic compound.

In writing the common names, the relative positions of the substituents at 1, 2-; 1, 3- and 1, 4- positions are indicated by prefixes ortho (o-), meta (m-) and para (p-), respectively. 

Isomerism in haloalkanes

Haloalkanes can exhibit the following kinds of isomerism:
    
Chain isomerism

The haloalkanes with four or more carbon atoms exhibit this kind of isomerism. For example,

1267_halides.png 
    
Position isomerism

The haloalkanes with three or more carbons show this kind of isomerism.

For example C3H7Br has two position isomers.

863_halides1.png

   Related Questions in Chemistry

  • Q : Various cons of eating the organic foods

    Describe the various cons of eating the organic foods? Briefly illustrate it.

  • Q : Molecular energies and speeds The

    The average translational kinetic energies and speeds of the molecules of a gas can be calculated.The result that the kinetic energy of 1 mol of the molecules of a gas is equal to 3/2 RT can be used to obtain numerical values for the

  • Q : Question on Mole fraction Mole fraction

    Mole fraction of any solution is equavalent to: (a) No. of moles of solute/ volume of solution in litter (b) no. of gram equivalent of solute/volume of solution in litters (c) no. of  moles of solute/ Mass of solvent in kg (d) no. of moles of any

  • Q : Explain Solid Compound Formation. In

    In some two component, solid liquid systems, a solid compound forms.In systems in which the components have an interaction for such other, a solid state compound of the two compounds of the two components can form.Formic acid and formaide form a solid state, one-to-one com

  • Q : Direction of dipole moment expected

    Illustrate the direction of the dipole moment expected for hydrogen bromide?

  • Q : What do you mean by the term alum What

    What do you mean by the term alum? Also illustrate its uses?

  • Q : Explain Ionic Bond with examples. The

    The bonding in ionic molecules can be described with a coulombic attractive term.For some diatomic molecules we take quite a different approach from that used in preceding sections to describe the bonding. Ionic bonds are interpreted in terms of the coulom

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : Advantages of doing your own chemistry

    What are the advantages of doing your own chemistry assignments? State your comment?

  • Q : Concentration of urea Help me to go

    Help me to go through this problem. 6.02x 1020 molecules of urea are present in 100 ml of its solution. The concentration of urea solution is: (a) 0.02 M (b) 0.01 M (c) 0.001 M (d) 0.1 M (Avogadro constant, N4= 6.02x 1023mol -1)<