--%>

How haloalkanes are prepared from hydrocarbons?

Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.
    
From alkanes

When alkanes are treated with halogens, chlorine or bromine, in the presence of light or heat, they undergo free radical substitution and a mixture of mono- and poly- substituted products are obtained.

2242_alkyl halide.png 

Although, the substitution beyond monohalogenation may be suppressed by using alkane in excess yet the method is not of much practical use because of the difficulties of separation of such a mixture.

In case of higher alkanes, different isomeric products are formed even when mono-substitution is carried out.

1702_alkyl halide1.png 

In general, the ease of substitution of different types of hydrogen atoms is:

Benzylic, allylic > tertiary > secondary > primary > vinylic, aryl

The iodination of alkanes is reversible and is done by heating with iodine in the presence of oxidising agents like conc. HNO3HIO4 orHIO3. The function of using such agents is to oxidize HI formed during the reaction to iodine, and hence shift the equilibrium in the forward direction.

264_alkyl halide2.png 

Due to formation of polysubstituted products and isomeric products, this method is not suitable for the laboratory preparation of pure haloalkanes. However, this method can be used for laboratory preparation of certain specific alkyl halides as given below:
    
When all the hydrogen atoms in the alkane are equivalent are equivalent, then it can form only one product on monosubstitution. In such cases this method may be applied.

924_alkyl halide3.png 
    
Allylic and benzylic halides can be prepared from alkenes and arenes respectively by this method because allylic and benzylic hydrogen atoms are substituted much more readily than vinylic and aryl hydrogen atoms.

260_alkyl halide4.png 

In such cases vinylic aryl hydrogens being less reactive do not participate in free radical substitution.

Allylic and benzylic hydrogen atoms are substituted very easily because their substitution proceeds via allylic and benzylic free radicals as intermediates. These intermediates are stabilized by resonance and hence being stable are formed at faster rate.
    
By halide exchange

Iodoalkanes can be obtained by treating bromo or chloroalkanes with a solution of sodium iodine in acetone or methanol. For example,

1778_alkyl halide5.png 

The reaction is known as Finkelstein reaction. This reaction is based on the fact that NaI is soluble in acetone but NaBr and NaCl are not. As a result, equilibrium in the above reaction is very much in favour of forward reaction. The reaction gives best result with primary halides.

Fluoroalkanes are difficult to prepare directly by the action of alkanes with fluorine. It is because fluoride has gor a high reactivity towards the hydrogen. It extracts all the hydrogen atoms from hydrocarbon molecule.

CH4 + 2F2  71_potassium permangnate3.png  4HF + C

However, Fluoroalkanes can be obtained by treating alkyl halides with salts like AgF, Hg2F2, CoF3 or SbF3. This reaction is known as Swarts reaction.

CH3Br + AgF 71_potassium permangnate3.png CH3F + AgBr

2CH3CH2Cl + Hg2F2  71_potassium permangnate3.png  2CH3CH2F + Hg2Cl
2

For replacement of two or three halogen atoms at the same carbon CoF3 or SbF3 is used.

67_alkyl halide6.png

   Related Questions in Chemistry

  • Q : What is covalent radii? Explain its

    Average covalent radii can be assigned on the basis of molecular structures. The accumulation of structural data by spectroscopic studies and both electron and x-ray diffraction studies allows one to investigate the possibili

  • Q : Problem on physical and thermodynamic

    The shells of marine organisms contain calcium carbonate CaCO3, largely in a crystalline form known as calcite. There is a second crystalline form of calcium carbonate known as aragonite. Physical and thermodynamic properties of calcite and aragonite at 298

  • Q : Concentration factor affected by

    Can someone please help me in getting through this problem. Which of the given concentration factor is affected by the change in temperature: (1) Molarity (2) Molality (3) Mole fraction (4) Weight fraction

  • Q : Molar solution of sulphuric acid Choose

    Choose the right answer from following. The molar solution of sulphuric acid is equal to: (a) N solution (b) 2Nsolution (c) N/2solution (d) 3Nsolution

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Explain the process of coagulation of

    Presence of small concentrations of appropriate electrolyte is necessary to stabilize the colloidal solutions. However, if the electrolytes are present in higher concentration, then the ions of the electrolyte neutralize the charge on the colloidal particles may unite

  • Q : What is protein in Chemistry Illustrate

    Illustrate what is protein in Chemistry?

  • Q : Explain the polymers and its types.

    Polymers are the chief products of modern chemical industry which form the backbone of present society. Daily life without the discovery and varied applications of polymers would not have been easier and colourful. The materials made of polymers find multifarious uses and applications in all walk

  • Q : Molar concentration Choose the right

    Choose the right answer from following. Molar concentration (M) of any solution : a) No. of moles of solute/Volume of solution in litre (b) No. of gram equivalent of solute / volume of solution in litre (c) No. of moles os solute/ Mass of solvent in kg  (

  • Q : Explain various chemicals associated

    During processing of food, several chemicals are added to it to augment its shelf life and to make it more attractive as well. Main types of food addi