--%>

How haloalkanes are prepared from hydrocarbons?

Alkyl halides can be prepared from alkanes through substitution and from alkenes through addition of halogen acids or through allylic substitution.
    
From alkanes

When alkanes are treated with halogens, chlorine or bromine, in the presence of light or heat, they undergo free radical substitution and a mixture of mono- and poly- substituted products are obtained.

2242_alkyl halide.png 

Although, the substitution beyond monohalogenation may be suppressed by using alkane in excess yet the method is not of much practical use because of the difficulties of separation of such a mixture.

In case of higher alkanes, different isomeric products are formed even when mono-substitution is carried out.

1702_alkyl halide1.png 

In general, the ease of substitution of different types of hydrogen atoms is:

Benzylic, allylic > tertiary > secondary > primary > vinylic, aryl

The iodination of alkanes is reversible and is done by heating with iodine in the presence of oxidising agents like conc. HNO3HIO4 orHIO3. The function of using such agents is to oxidize HI formed during the reaction to iodine, and hence shift the equilibrium in the forward direction.

264_alkyl halide2.png 

Due to formation of polysubstituted products and isomeric products, this method is not suitable for the laboratory preparation of pure haloalkanes. However, this method can be used for laboratory preparation of certain specific alkyl halides as given below:
    
When all the hydrogen atoms in the alkane are equivalent are equivalent, then it can form only one product on monosubstitution. In such cases this method may be applied.

924_alkyl halide3.png 
    
Allylic and benzylic halides can be prepared from alkenes and arenes respectively by this method because allylic and benzylic hydrogen atoms are substituted much more readily than vinylic and aryl hydrogen atoms.

260_alkyl halide4.png 

In such cases vinylic aryl hydrogens being less reactive do not participate in free radical substitution.

Allylic and benzylic hydrogen atoms are substituted very easily because their substitution proceeds via allylic and benzylic free radicals as intermediates. These intermediates are stabilized by resonance and hence being stable are formed at faster rate.
    
By halide exchange

Iodoalkanes can be obtained by treating bromo or chloroalkanes with a solution of sodium iodine in acetone or methanol. For example,

1778_alkyl halide5.png 

The reaction is known as Finkelstein reaction. This reaction is based on the fact that NaI is soluble in acetone but NaBr and NaCl are not. As a result, equilibrium in the above reaction is very much in favour of forward reaction. The reaction gives best result with primary halides.

Fluoroalkanes are difficult to prepare directly by the action of alkanes with fluorine. It is because fluoride has gor a high reactivity towards the hydrogen. It extracts all the hydrogen atoms from hydrocarbon molecule.

CH4 + 2F2  71_potassium permangnate3.png  4HF + C

However, Fluoroalkanes can be obtained by treating alkyl halides with salts like AgF, Hg2F2, CoF3 or SbF3. This reaction is known as Swarts reaction.

CH3Br + AgF 71_potassium permangnate3.png CH3F + AgBr

2CH3CH2Cl + Hg2F2  71_potassium permangnate3.png  2CH3CH2F + Hg2Cl
2

For replacement of two or three halogen atoms at the same carbon CoF3 or SbF3 is used.

67_alkyl halide6.png

   Related Questions in Chemistry

  • Q : Volumes of solution after concentration

    Hydrochloric acid solution A and B encompass concentration of 0.5N and 0.1N  corresspondingly. The volumes of solutions A and B needed to make 2liters of 0.2N of HCL are: (i) 0.5l of A + 1.5l of B (ii) 1.5l of A + 0.5 l of B  (iii) 1.0 l of A + 1.0l of B&nbs

  • Q : Coordination number of a cation The

    The coordination number of a cation engaging a tetrahedral hole is: (a) 6  (b) 8  (c) 12  (d) 4 Answer: (d) The co-ordination number of a cation occupying a tetrahedral hole is 4.

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Molarity A solution has volume 200ml

    A solution has volume 200ml and molarity 0.1.if it is diluted 5times then calculate the molarity of reasulying solution and the amount of water added to it.

  • Q : Describe the properties of the

    Briefly describe the properties of the carbohydrates?

  • Q : Problem on Adiabatic expansion

    Calculate the change in entropy for the system for each of the following cases. Explain the sign that you obtain by a physical argument a) A gas undergoes a reversible, adiabatic expansion from an initial state at 500 K, 1 MPa, and

  • Q : Vapour pressure Vapour pressure of

    Vapour pressure of methanol in water Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water

  • Q : Acid Solutions Choose the right answer

    Choose the right answer from following. Volume of water needed to mix with 10 ml 10N NHO3 to get 0.1 N HNO3: (a) 1000 ml (b) 990 ml (c) 1010 ml (d) 10 ml

  • Q : Molar mass of solute The boiling point

    The boiling point of benzene is 353.23 K. If 1.80 gm of a non-volatile solute was dissolved in 90 gm of benzene, the boiling point is increased to 354.11 K. Then the molar mass of the solute is: (a) 5.8g mol-1  (b)

  • Q : Modern periodic table and Mendeleevs

    Differentiate between the modern periodic table and Mendeleevs table?