--%>

What is covalent radii? Explain its calculation.

Average covalent radii can be assigned on the basis of molecular structures.


The accumulation of structural data by spectroscopic studies and both electron and x-ray diffraction studies allows one to investigate the possibility fo assigning a covalent bound molecule, i.e. of assigning a covalent radius to each atom. One begins by assigning half the length of a homonuclear bond as the covalent radius of the atoms forming the bond. Thus, from the equilibrium bond length of Cl2 of 199 pm, one obtains the value of 100 pm for the covalent radius of chlorine. From the carbon-carbon distance of 154 pm in ethane, for example, one obtains a value of 77 pm for the covalent radius of carbon and so forth. To proceed, one must now establish the extent to which the length of covalent bonds can be treated in terms of the sums of such covalent radii. 

More extensive treatments of this type show that the bond lengths of many bonds are given within a few picometers by the sum of assigned atomic covalent radii. This suggests that covalent bonds have lengths sufficiently independent of factors other than the fixed radii for there to be some value in assigning radii to the bonded nuclei. 

Some tests of additivity of covalent bond radii, pm:

390_covalent radii.png 

Further comparisons of these values with experimental results indicate, as shown in fact by some of the examples of table 1, that serious discrepancies can occur between simply predicted covalent-bond lengths and those observed. The C-F bond, for example, is calculated from the data of table 1 to have a length of 146 pm, whereas microwave spectral results forCH3F give it as 138.5 pm and electron-diffraction results for CF4 give 132 pm.

Such discrepancies led V. Schomaker and D. P. Stevenson to suggest that a bond length calculated from covalent radii must be adjusted for the difference in electronegativity of the bonded atoms. They suggested the relation:

rAB = rA + rB - 90 (xA - xB) r in pm

Some but not all, the interesting violations of simple covalent radii additivity are removed by this empirical expression. In other cases the Stevenson-Schomaker correction makes the agreement with the observed length pooper than that obtained by a simple addition of the covalent radii. Although a number of factors must be operating to affect the length of a bond between a pair of nuclei in any given molecule, the covalent radii of table 2 are often of value in estimating this bond length.

Covalent radii for atoms involved in single-bonded compounds, pm:

   Related Questions in Chemistry

  • Q : What is synthetic rubber and how it

    To meet human needs, scientists have started preparing synthetic rubbers. Besides having similar properties as natural rubbers they are tougher, more flexible and more durable than natural rubber. They are capable of getting stretched to twice its length. Though, it reverts to its original shape

  • Q : Molarity of Sulfuric acid Choose the

    Choose the right answer from following. What is the molarity of H2SO4 solution, that has a density 1.84 gm/cc at 35c and contains solute 98% by weight: (a) 4.18 M (b) 8.14 M (c)18.4 M (d)18 M

  • Q : Finding Active mass of urea Can someone

    Can someone please help me in getting through this problem. 10 litre solution of urea comprises of 240 gm urea. The active mass of urea is: (i) 0.04 (ii) 0.02 (iii) 0.4 (iv) 0.2

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : DNA Organic Explain DNA organic in

    Explain DNA organic in brief?

  • Q : Question based on vapour pressure and

    Benzene and toluene form nearly ideal solutions. At 20°C, the vapour pressure of benzene is 75 torr and that of toluene is 22 torr. The parial vapour pressure of benzene at 20°C for a solution containing 78g of benzene and 46g of toluene in torr is: (a) 50 (b)

  • Q : Symmetry Elements The symmetry of the

    The symmetry of the molecules can be described in terms of electrons of symmetry and the corresponding symmetry operations.Clearly some molecules, like H2O and CH4, are symmetric. Now w

  • Q : What is schrodinger wave equation? The

    The Schrodinger wave equation generalizes the fitting-in-of-waves procedure.The waves that "fit" into the region to which the particle is contained can be recognized "by inspection" only for a few simple systems. For other problem a mathematical procedure

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : Coordination compounds discuss the

    discuss the practical uses of coordination compounds, give reactions involves and explain whats happening in the process