--%>

What is covalent radii? Explain its calculation.

Average covalent radii can be assigned on the basis of molecular structures.


The accumulation of structural data by spectroscopic studies and both electron and x-ray diffraction studies allows one to investigate the possibility fo assigning a covalent bound molecule, i.e. of assigning a covalent radius to each atom. One begins by assigning half the length of a homonuclear bond as the covalent radius of the atoms forming the bond. Thus, from the equilibrium bond length of Cl2 of 199 pm, one obtains the value of 100 pm for the covalent radius of chlorine. From the carbon-carbon distance of 154 pm in ethane, for example, one obtains a value of 77 pm for the covalent radius of carbon and so forth. To proceed, one must now establish the extent to which the length of covalent bonds can be treated in terms of the sums of such covalent radii. 

More extensive treatments of this type show that the bond lengths of many bonds are given within a few picometers by the sum of assigned atomic covalent radii. This suggests that covalent bonds have lengths sufficiently independent of factors other than the fixed radii for there to be some value in assigning radii to the bonded nuclei. 

Some tests of additivity of covalent bond radii, pm:

390_covalent radii.png 

Further comparisons of these values with experimental results indicate, as shown in fact by some of the examples of table 1, that serious discrepancies can occur between simply predicted covalent-bond lengths and those observed. The C-F bond, for example, is calculated from the data of table 1 to have a length of 146 pm, whereas microwave spectral results forCH3F give it as 138.5 pm and electron-diffraction results for CF4 give 132 pm.

Such discrepancies led V. Schomaker and D. P. Stevenson to suggest that a bond length calculated from covalent radii must be adjusted for the difference in electronegativity of the bonded atoms. They suggested the relation:

rAB = rA + rB - 90 (xA - xB) r in pm

Some but not all, the interesting violations of simple covalent radii additivity are removed by this empirical expression. In other cases the Stevenson-Schomaker correction makes the agreement with the observed length pooper than that obtained by a simple addition of the covalent radii. Although a number of factors must be operating to affect the length of a bond between a pair of nuclei in any given molecule, the covalent radii of table 2 are often of value in estimating this bond length.

Covalent radii for atoms involved in single-bonded compounds, pm:

   Related Questions in Chemistry

  • Q : Concentration of Barium chloride Give

    Give me answer of this question. If 5.0gm of BaCl2 is present in 106 gm solution, the concentration is: (a)1 ppm (b)5 ppm (c)50 ppm (d)1000 ppm

  • Q : Problem on physical and thermodynamic

    The shells of marine organisms contain calcium carbonate CaCO3, largely in a crystalline form known as calcite. There is a second crystalline form of calcium carbonate known as aragonite. Physical and thermodynamic properties of calcite and aragonite at 298

  • Q : Various cons of eating the organic foods

    Describe the various cons of eating the organic foods? Briefly illustrate it.

  • Q : Determining mole fraction of water in

    A mixture has 18 g water and 414 g ethanol. What is the mole fraction of water in mixture (suppose ideal behaviour of mixture): (i) 0.1  (ii) 0.4  (iii) 0.7  (iv) 0.9 Choose the right answer from abo

  • Q : Molality of glucose Help me to go

    Help me to go through this problem. Molecular weight of glucose is 180. A solution of glucose which contains 18 gms per litre is : (a) 2 molal (b) 1 molal (c) 0.1 molal (d)18 molal

  • Q : What are heterogenous catalysis? Give

    When the catalyst exists in a different phase than that of reactants, it is said to be heterogeneous catalyst, and the catalysis is called heterogeneous catalysis. For example, SO2 can be oxidized to SO3

  • Q : Chemical formula of detergent Describe

    Describe the chemical formula of detergent?

  • Q : Colligative property associated question

    Give me answer of this question. Which of the following is not a colligative property : (a)Optical activity (b)Elevation in boiling point (c)Osmotic pressure (d)Lowering of vapour pressure

  • Q : What is Henry law constant and its

    1. The units of Henry Law constant are same as those of pressure, i.e. torr or h bar. 2. Different gases have dissimilar values of Henry law constant. The values of KH for some gases in water are given in tabl

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th