--%>

What is covalent radii? Explain its calculation.

Average covalent radii can be assigned on the basis of molecular structures.


The accumulation of structural data by spectroscopic studies and both electron and x-ray diffraction studies allows one to investigate the possibility fo assigning a covalent bound molecule, i.e. of assigning a covalent radius to each atom. One begins by assigning half the length of a homonuclear bond as the covalent radius of the atoms forming the bond. Thus, from the equilibrium bond length of Cl2 of 199 pm, one obtains the value of 100 pm for the covalent radius of chlorine. From the carbon-carbon distance of 154 pm in ethane, for example, one obtains a value of 77 pm for the covalent radius of carbon and so forth. To proceed, one must now establish the extent to which the length of covalent bonds can be treated in terms of the sums of such covalent radii. 

More extensive treatments of this type show that the bond lengths of many bonds are given within a few picometers by the sum of assigned atomic covalent radii. This suggests that covalent bonds have lengths sufficiently independent of factors other than the fixed radii for there to be some value in assigning radii to the bonded nuclei. 

Some tests of additivity of covalent bond radii, pm:

390_covalent radii.png 

Further comparisons of these values with experimental results indicate, as shown in fact by some of the examples of table 1, that serious discrepancies can occur between simply predicted covalent-bond lengths and those observed. The C-F bond, for example, is calculated from the data of table 1 to have a length of 146 pm, whereas microwave spectral results forCH3F give it as 138.5 pm and electron-diffraction results for CF4 give 132 pm.

Such discrepancies led V. Schomaker and D. P. Stevenson to suggest that a bond length calculated from covalent radii must be adjusted for the difference in electronegativity of the bonded atoms. They suggested the relation:

rAB = rA + rB - 90 (xA - xB) r in pm

Some but not all, the interesting violations of simple covalent radii additivity are removed by this empirical expression. In other cases the Stevenson-Schomaker correction makes the agreement with the observed length pooper than that obtained by a simple addition of the covalent radii. Although a number of factors must be operating to affect the length of a bond between a pair of nuclei in any given molecule, the covalent radii of table 2 are often of value in estimating this bond length.

Covalent radii for atoms involved in single-bonded compounds, pm:

   Related Questions in Chemistry

  • Q : Explain Photoelectron Spectroscopy. The

    The energies of both the outer and inner orbitals of atoms and molecules can be determined by photoelectron spectroscopy.Energy changes of the outermost or highest energy electron of molecules were dealt with here in a different passion. The energies of ot

  • Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : Theory of one dimensional motion For

    For motion in one dimension, the distribution of the molecules over quantum states, speeds, and energies can be deduced.Here we show that the energy of a macroscopic gas sample can be described on the basis of our knowledge of the quantum states allowed to

  • Q : Utilization of glacial acetic acid What

    What is the utilization of glacial acetic acid? Briefly describe the uses.

  • Q : Vapour pressure of the pure hydrocarbons

    Give me answer of this question. A solution has a 1 : 4 mole ratio of pentane to hexane. The vapour pressure of the pure hydrocarbons at 20°C are 440 mmHg for pentane and 120 mmHg for hexane. The mole fraction of pentane in the vapour phase would be: (a) 0.549 (b)

  • Q : Vapour pressure of volatile substance

    Provide solution of this question. According to Raoult's law the relative lowering of vapour pressure of a solution of volatile substance is equal to: (a) Mole fraction of the solvent (b) Mole fraction of the solute (c) Weight percentage of a solute (d) Weight perc

  • Q : Effect on vapour pressure of dissolving

    Give me answer of this question. When a substance is dissolved in a solvent the vapour pressure of the solvent is decreased. This results in: (a) An increase in the b.p. of the solution (b) A decrease in the b.p. of the solvent (c) The solution having a higher fr

  • Q : Mole fraction of Carbon dioxide Choose

    Choose the right answer from following. If we take 44g of CO2 and 14g of N2 what will be mole fraction of CO2 in the mixture: (a) 1/5 (b) 1/3 (c) 2/3 (d) 1/4

  • Q : Molarity of cane sugar solution 171 g

    171 g of cane sugar (C12H22O11)  is dissolved in one litre of water. Find the molarity of the solution: (i) 2.0 M (ii) 1.0 M (iii) 0.5 M (iv) 0.25 M Choose the right answer from above.

  • Q : Solution and colligative properties

    what is molarity of a solution of hcl which contains 49% by weight of solute and whose specific gravity is 1.41