--%>

Explain structure basicity of amines.

Basic character of amines is related to their structural arrangement. Basic strength of amines depends on the relative ease of formation of the corresponding cation by accepting a proton from the acid. Greater the stability of cation is, more is basic strength of amine.

Alkyl amines Verses Ammonia
    
Alkyl amines are stronger bases than ammonia. This can be explained in terms of electron releasing inductive effect (+I effect) of alkyl groups. Alkyl groups by their electron releasing effect, concentrate electron density on nitrogen and hence, make the lone pair of nitrogen more easily available for sharing with proton. Moreover, electron releasing effect of alkyl groups stabilizes the alkyl ammonia ion formed and hence, shifts the equilibrium in forward direction making the alkylamines stronger bases than ammonia.
1194_Amines.png 
    
Variation of basic strength in primary, secondary and tertiary alkyl amines. Among primary, secondary and tertiary aliphatic amines, the electron releasing effect is maximum in tertiary amines and minimum in primary amines.

The basic strength is expected to increase from primary amine to tertiary amine. The observed basic strength of ethyl amine, diethyl amine and trimethyl amine have been found to follow the expected order in gas phase or in non aqueous solvents like chlorobenzene. However, the order of basicity in aqueous solution does not follow the expected trend and gets altered is revealed by their Kb values.

The actual order of basic strength among 1°, 2°, 3° methyl amines and ethyl amines is as follows:

2327_Amines1.png 

Why order of basic strength gets altered in aqueous medium?

In aqueous medium the basic strength of amines is determined by the stability of the corresponding conjugate acid, or protonated amine i.e. the ammonium ion formed by accepting the proton. The stability of the protonated amine is not only determined by the inductive effect but also by the hydration effect and steric factors.
    
Hydration effect: refers to the stabilization of the protonated amine by the water molecules water molecules form H-bonds with the protonated consequently, greater will be the basic strength of the corresponding amine. The hydration due to H-bonding is maximum in monoalkyl ammonium ion (protonated cation of 1° amine), it is less in dialkyl ammonium ion and still less in trialkyl ammonium ion. Therefore, basic strength should decrease from 1° > 2° > 3°.
    
Steric factors: refer to the crowding of alkyl groups around N atom which causes hindrance to protonation of amine and also cause obstruction to H-bonding of protonated amine. The steric effect obviously increase with the increase in the number of alkyl groups around N atom and consequently the basic strength of amines due to steric factors only should decrease from 1° > 2° > 3°.

The above discussion give us the conclusion that the basic strength of amines can be decided by the overall combined effect of I-effect, hydration effect and steric factors. All these factors favour the highest basic strength of 2° amine.

Now, if alkyl groups are small (such as - CH3 group), then steric hindrance to H-bonding is least. In this case, H-bonding predominates over the stability due to + I effect and therefore, CH3NH2 is more basic than (CH3)3N which corresponds to the observed order.

On the other hand, if alkyl groups are bulkier (-C2H5 and C3H7- etc). There will be considerable steric hindrance to H-bonding. Thus in this case + I effect predominates over stability due to H-bonding. Hence, in this case 3° amine becomes more basic than the 1° amine.

 

 

   Related Questions in Chemistry

  • Q : Linde liquefaction process Liquefied

    Liquefied natural gas (LNG) is produced using a Linde liquefaction process from pure methane gas at 3 bar and 280 K (conditions at point 1 in figure below). A three-stage compressor with interceding is used to compress the methane to 100 bar (point 2). The first stage

  • Q : Concentration factor affected by

    Can someone please help me in getting through this problem. Which of the given concentration factor is affected by the change in temperature: (1) Molarity (2) Molality (3) Mole fraction (4) Weight fraction

  • Q : Partial vapour pressure of volatile

    Choose the right answer from following. For a solution of volatile liquids the partial vapour pressure of each component in solution is directly proportional to: (a) Molarity (b) Mole fraction (c) Molality (d) Normality

  • Q : Problem based on molarity Select the

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Osmotic Pressure The O.P. (Osmotic

    The O.P. (Osmotic Pressure) of equimolar solution of Urea, BaCl2 and AlCl3, will be in the order:(a) AlCl3 > BaCl2 > Urea  (b) BaCl2 > AlCl3 > Urea  (c) Urea > BaCl2<

  • Q : Amines why o-toluidine is a weaker base

    why o-toluidine is a weaker base than aniline?

  • Q : What are ion selective electrodes? Ion

    Ion Selective Electrodes An ion selective membrane can be used to form an electrochemical cell whose emf depends on the concentration of that ion. Before we proceed to an important application of emf measurements, brie

  • Q : Molarity of Barium hydroxide 25 ml of a

    25 ml of a solution of barium hydroxide on titration with 0.1 molar solution of the hydrochloric acid provide a litre value of 35 ml. The molarity of barium hydroxide solution will be: (i) 0.07 (ii) 0.14 (iii) 0.28 (iv) 0.35

  • Q : Solubility of a gas The solubility of a

    The solubility of a gas in water depends on: (a) Nature of the gas (b) Temperature (c) Pressure of the gas (d) All of the above. Can someone help me in finding out the right answer.

  • Q : Describe chemical properties of amines.

    Like ammonia, primary, secondary and tertiary amines have a single pair of electrons on N atom. Hence chemical behavior of amines is similar to ammonia. Amines are basic in nature, and in most of the reactions they act as nucleophiles.      1. Reaction wi