Define Virial Equation

The constant of vander Waal's equation can be related to the coefficients of the virial equation. 

Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us focus on the description that this equation gives to the onset of nonideal behaviour. This stage is shown most clearly on displays of Z = PV/(RT) versus P. the first deviations from the ideal gas value of Z = 1 show up as straight line sections in Z-versus-P plots. These initial stages of non ideal behaviour are described by the simple virial expressions Z = 1 + BPP or Z = 1 + BV/V. we begin, therefore, by rearranging van der Waal's equation to a form that can be compared with the virial equations.

Multiplication of van der Waal's equation, in the form and for 1 mol by V/(RT) converts this equation to 

PV/RT = V/(V - b) - a/RTV = 1/(1 - b/V) - a/RTV


We develop an equation with the form of the virial equation with volume terms by recognizing that the 1/(1 - b/V) term can be expanded by using the binomial expansion (1 - x)-1 = 1 + x + x2 + .... If only the first three terms of the series are exhibited, we develop to

54_virial equation.png 

Comparison with virial equations, shows that van der Waals' equation implies the definition

BV = b - a/RT 

Experimental values for BV for neon are plotted, notice that the temperature dependence of this second virial coefficient is generally consistent with that suggested values of BV are negative at low temperatures where the second term dominates, and these values increase and become positive at higher temperatures where the first term dominates. The curve is drawn on the basis with a and b values adjusted to give a good fit to the experimental results. Fitting second virial coefficient data provides, as this example illustrates, another way for assigning values to van der Waals' a and b parameters.

Van der Waals' excluded volume and molecular diameters

The excluded volume b, introduced by van der Waals' as an empirical correction term, can be related to the size of the gas molecules. To do so, we assume the excluded volume is the result pairwise coming together of molecules. This assumption is justified when b values are obtained from second virial coefficient data. Fitting values for the empirical constants of van der Waals' equation. 

So that we need to deal with a single molecular size parameter, we treat molecules as spherical particles. The diameter of a molecule is d. the volume of a molecule is 4/3 ∏ (d/2)3.
The volume in which a pair of molecules cannot move because of each other's presence is indicated by the lightly shaded region. The radius of this excluded volume sphere is equal to the molecular diameter d. the volume excluded to the pair of molecules is 4/3∏d3. We thus obtain
Excluded volume per molecule = ½ (4/3 ∏d3)

= 4[4/3∏(d/2)3]


The expression in brackets is the volume of a molecule. Thus the excluded volume per molecule is 4 times the actual volume of the molecule.

Van der Waals' b term is the excluded volume per mole of molecules. Thus we have, with N representing Avogadro's number


B = 4 N [4/3∏ (d/2)3] = 4 N (volume of molecule)

Molecular size and Lennard-Jones Intermolecular attraction term based on second virial coefficient data:

Gas Excluded volume b, L mol-1 Molecular diam. D, pm εLJ, J × 10-21
He 0.021 255 0.14
Ne 0.026 274 0.49
Ar 0.050 341 1.68
Kr 0.058 358 2.49
Xe 0.084 405 3.11
H2 0.031 291 0.52
N2 0.061 364 1.28
O2 0.058 358 1.59
CH4 0.069 380 1.96
C(CH3)4 0.510 739 3.22

 

   Related Questions in Chemistry

  • Q : Vapour pressure of a liquid Help me to

    Help me to go through this problem. The vapour pressure of a liquid depends on: (a) Temperature but not on volume (b) Volume but not on temperature (c) Temperature and volume (d) Neither on temperature nor on volume

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1

  • Q : Mole fraction of benzene Choose the

    Choose the right answer from following. In a solution of 8.7g benzene C6H6 and 46.0 gm toluene ,(C6, H5, CH3) the mole fraction of benzene in this solution is: (a)1/6 (b)1/5 (c)1/2 (d)1/3

  • Q : Precipitation Addition of conc. HCl to

    Addition of conc. HCl to saturated Bacl2 solution precipitates Bacl2 ; because of the following reason : (a) It follows from Le Chatelier's principle (b) Of common-ion effect (c) Ionic product (Ba++)(cl) remains constant in a saturated sol

  • Q : Molarity of sodium hydroxide Can

    Can someone please help me in getting through this problem. Determine the molarity of a solution having 5g of sodium hydroxide in 250ml  solution is: (i) 0.5  (ii) 1.0  (iii) 2.0   (d) 0.1Answer: The right answer i

  • Q : Problem on relative volatility In

    In vapor-liquid equilibrium the relative volatility αij is defined to be the ratio of the separation or K factor for species i to that for species j, that is,  αij = Ki/Kj

  • Q : Lowering of vapour pressure Help me to

    Help me to go through this problem. Lowering of vapour pressure is highest for: (a) urea (b) 0.1 M glucose (c) 0.1M MgSo4 (d) 0.1M BaCl2

  • Q : Value of molar solution Select the

    Select the right answer of the question. Molar solution contains: (a)1000g of solute (b)1000g of solvent (c)1 litre of solvent (d)1 litre of solution

  • Q : Latent heat of vaporization Normal

    Normal butane (C4H10) is stored as a compressed liquid at 90°C and 1400 kPa. In order to use the butane in a low-pressure gas-phase process, it is throttled to 150 kPa and passed through a vaporizer. The butane emerges from the vaporizer as a

  • Q : Difference in Mendeleevs table and

    Briefly describe the difference in the Mendeleev’s table and modern periodic table?

©TutorsGlobe All rights reserved 2022-2023.