Define Virial Equation

The constant of vander Waal's equation can be related to the coefficients of the virial equation. 

Vander Waal's equation provides a good overall description of the real gas PVT behaviour. Now let us focus on the description that this equation gives to the onset of nonideal behaviour. This stage is shown most clearly on displays of Z = PV/(RT) versus P. the first deviations from the ideal gas value of Z = 1 show up as straight line sections in Z-versus-P plots. These initial stages of non ideal behaviour are described by the simple virial expressions Z = 1 + BPP or Z = 1 + BV/V. we begin, therefore, by rearranging van der Waal's equation to a form that can be compared with the virial equations.

Multiplication of van der Waal's equation, in the form and for 1 mol by V/(RT) converts this equation to 

PV/RT = V/(V - b) - a/RTV = 1/(1 - b/V) - a/RTV


We develop an equation with the form of the virial equation with volume terms by recognizing that the 1/(1 - b/V) term can be expanded by using the binomial expansion (1 - x)-1 = 1 + x + x2 + .... If only the first three terms of the series are exhibited, we develop to

54_virial equation.png 

Comparison with virial equations, shows that van der Waals' equation implies the definition

BV = b - a/RT 

Experimental values for BV for neon are plotted, notice that the temperature dependence of this second virial coefficient is generally consistent with that suggested values of BV are negative at low temperatures where the second term dominates, and these values increase and become positive at higher temperatures where the first term dominates. The curve is drawn on the basis with a and b values adjusted to give a good fit to the experimental results. Fitting second virial coefficient data provides, as this example illustrates, another way for assigning values to van der Waals' a and b parameters.

Van der Waals' excluded volume and molecular diameters

The excluded volume b, introduced by van der Waals' as an empirical correction term, can be related to the size of the gas molecules. To do so, we assume the excluded volume is the result pairwise coming together of molecules. This assumption is justified when b values are obtained from second virial coefficient data. Fitting values for the empirical constants of van der Waals' equation. 

So that we need to deal with a single molecular size parameter, we treat molecules as spherical particles. The diameter of a molecule is d. the volume of a molecule is 4/3 ∏ (d/2)3.
The volume in which a pair of molecules cannot move because of each other's presence is indicated by the lightly shaded region. The radius of this excluded volume sphere is equal to the molecular diameter d. the volume excluded to the pair of molecules is 4/3∏d3. We thus obtain
Excluded volume per molecule = ½ (4/3 ∏d3)

= 4[4/3∏(d/2)3]


The expression in brackets is the volume of a molecule. Thus the excluded volume per molecule is 4 times the actual volume of the molecule.

Van der Waals' b term is the excluded volume per mole of molecules. Thus we have, with N representing Avogadro's number


B = 4 N [4/3∏ (d/2)3] = 4 N (volume of molecule)

Molecular size and Lennard-Jones Intermolecular attraction term based on second virial coefficient data:

Gas Excluded volume b, L mol-1 Molecular diam. D, pm εLJ, J × 10-21
He 0.021 255 0.14
Ne 0.026 274 0.49
Ar 0.050 341 1.68
Kr 0.058 358 2.49
Xe 0.084 405 3.11
H2 0.031 291 0.52
N2 0.061 364 1.28
O2 0.058 358 1.59
CH4 0.069 380 1.96
C(CH3)4 0.510 739 3.22

 

   Related Questions in Chemistry

  • Q : Gibberella fusarium in bioremediation

    in bioremediation gibberella fusarium is used to break down____?

  • Q : Molarity based question Help me to

    Help me to solve this problem. 4.0 gm of NaOH are contained in one decilitre of solution. Its molarity would be: (a) 4 M (b)2 M (c)1 M (d)1.5 M

  • Q : What is Spectroscopy? This is a very

    This is a very important aspect of Physical Chemistry in which knowledge of the size, shape, rigidity and electronic structure of molecules deduced from the experimental methods treated here goes hand in hand with the theoretical approaches of chemical reactions. Spec

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : Question 6 A student was analyzing an

    A student was analyzing an unknown containing only Group IV cations. When the unknown was treated with 3M (NH4)2CO3 solution, a white precipitate formed. Because the acetic acid bottle was empty, the student used 6M HCl to dissolve the precipitate. Following the procedure of this experiment, the stu

  • Q : Problem on thermodynamic equilibrium In

    In the manufacture of sulphuric acid by the contact process, S02 is oxidized to SO3 over a vanadium catalyst: The reactor is adiabatic and operates at atmospheric pressure. The gases enter the reactor at 410&d

  • Q : Explain alcohols and phenols in organic

    Alcohols and phenols are the compounds

  • Q : What is Elevation in boiling point? The

    The boiling of a liquid may be defused by the temperature at which its vapour pressure which is equal to atmospheric pressure. The effect of addition in a non-volatile solute on the boiling point shown and its solution containing non-volatile solute with tempe

  • Q : Lab question Explain how dissolving the

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately 5.

  • Q : What are various structure based

    This classification of polymers is based upon how the monomeric units are linked together. Based on their structure, the polymers are classified as: 1. Linear polymers: these are the polymers in which monomeric units are linked together to form long straight c

©TutorsGlobe All rights reserved 2022-2023.