--%>

Molecular basis of third law.

The molecular, or statistical, basis of the third law can be seen by investigating S = k in W.

The molecular deductions of the preceding sections have led to the same conclusions as that stated in the third law of thermodynamics, namely, that a value can be assigned to the entropy of any substance. When the entropy values calculated from the details of the molecular energies are compared with those obtained calorimetric third law measurements, arrangements with in experimental error in usually found, but there are some exceptions. It is the perfectly ordered state of the crystal, with all the molecules in the same lowest energy level that is the molecular basis of the third law that the entropy is zero at absolute zero.

The third law value obtained for the entropy of CO at 1 bar and 298.15 K is 193.3 JK -1 mol-1. This value is obtained lower than the statistical result of 197.6 J K mol-1 obtained by the methods of the preceding section. Similar descriptions are found for NO and N2O. The third law result forH2O vapour is lower than the statistically calculated value by 3.3 J K-1 mol-1  there discrepancies can now be attributed to the failure of these materials to form the perfect crystalline state required at absolute zero for the third law to be applied. It is the perfectly ordered state of the crystal, with all the molecules in the same lowest energy level that is the molecular basis of the third law that the entropy is zero at absolute zero. (The positive value at the entropies of all compounds at temperature above absolute zero result from the fact as the temperature is raised, more and more energy levels become accessible to the molecules. The entropy at such temperature is, of course very characteristic of the individual molecule, since each molecule has its own particular energy level pattern.)

The discrepancies between calculated and third law entropies can now be attributed to a nonzero value of the entropy at absolute zero. Thus we must explain absolute zero entropy of, for example, about 4.3 J K-1 mol-1 for CO.

A disorder to be expected for such a material is that in which the molecular alignment in the crystal is not CO CO CO CO .... But rather a disorder pattern in the crystal like CO CO OC CO.... a crystal formed initially in this way could have the disorder "frozen" in as the temperature is lowered, there being too little thermal energy for the molecules to rearrange to the ordered structure. Thus, instead of each molecule having a single state to occupy, the randomness makes two states available to each molecule. The entropy of such a crystal can then be expected to be greater by k In 2N = R In 2 = 5.8 JK-1 mol-1 than it would be for a perfect crystal. This is, in fact, the approximate discrepancy found for CO.

Other types of disorder can now be expected to persist at absolute zero and to lead to apparent discrepancies in the third law. For example, a glassy material at entropy of zero will not have the necessary molecular order to guarantee as entropy of zero at absolute zero. In view of such difficulties, the third law statement must include the restriction that only perfectly ordered crystalline materials have zero entropy at absolute zero.

   Related Questions in Chemistry

  • Q : Molarity of Barium hydroxide 25 ml of a

    25 ml of a solution of barium hydroxide on titration with 0.1 molar solution of the hydrochloric acid provide a litre value of 35 ml. The molarity of barium hydroxide solution will be: (i) 0.07 (ii) 0.14 (iii) 0.28 (iv) 0.35

  • Q : What is adsorption and its examples. In

    In a liquid a solid substance a molecule present within the bulk of the substance is being attracted infirmly from all sides by the neighbouring molecules. Hence there is no bet force acting on the molecule or there are no unbalanced forces of the molecule. On the oth

  • Q : Colligative property problem Which is

    Which is not a colligative property: (a) Refractive index (b) Lowering of vapour pressure (c) Depression of freezing point (d) Elevation of boiling point    

  • Q : Strength of the Hydrochloric acid

    Provide solution of this question. 1.0 gm of pure calcium carbonate was found to need 50 ml of dilute HCL for complete reaction. The strength of the HCL solution is specified by : (a) 4 N (b) 2 N (c) 0.4 N (d) 0.2 N

  • Q : Question on seminormal solution Provide

    Provide solution of this question. The weight of sodium carbonate required to prepare 500 ml of a seminormal solution is: (a) 13.25 g (b) 26.5 g (c) 53 g (d) 6.125 g

  • Q : Effect on vapour pressure of dissolving

    Give me answer of this question. When a substance is dissolved in a solvent the vapour pressure of the solvent is decreased. This results in: (a) An increase in the b.p. of the solution (b) A decrease in the b.p. of the solvent (c) The solution having a higher fr

  • Q : Molar mass Select the right answer of

    Select the right answer of the question. Which is heaviest: (a)25 gm of mercury (b)2 moles of water (c)2 moles of carbon dioxide (d)4 gm atoms of oxygen

  • Q : Question based on vapour pressure and

    Give me answer of this question. The vapour pressure of water at 20degreeC is 17.54 mm. When 20g of a non-ionic, substance is dissolved in 100g of water, the vapour pressure is lowered by 0.30 mm. What is the molecular weight of the substances: (a) 210.2 (b) 206.88

  • Q : Biodegradable polymers what are the

    what are the examples of biodegradable polymers

  • Q : Define tripod and its use Illustrate a

    Illustrate a tripod? And how it’s used?