--%>

Molecular basis of third law.

The molecular, or statistical, basis of the third law can be seen by investigating S = k in W.

The molecular deductions of the preceding sections have led to the same conclusions as that stated in the third law of thermodynamics, namely, that a value can be assigned to the entropy of any substance. When the entropy values calculated from the details of the molecular energies are compared with those obtained calorimetric third law measurements, arrangements with in experimental error in usually found, but there are some exceptions. It is the perfectly ordered state of the crystal, with all the molecules in the same lowest energy level that is the molecular basis of the third law that the entropy is zero at absolute zero.

The third law value obtained for the entropy of CO at 1 bar and 298.15 K is 193.3 JK -1 mol-1. This value is obtained lower than the statistical result of 197.6 J K mol-1 obtained by the methods of the preceding section. Similar descriptions are found for NO and N2O. The third law result forH2O vapour is lower than the statistically calculated value by 3.3 J K-1 mol-1  there discrepancies can now be attributed to the failure of these materials to form the perfect crystalline state required at absolute zero for the third law to be applied. It is the perfectly ordered state of the crystal, with all the molecules in the same lowest energy level that is the molecular basis of the third law that the entropy is zero at absolute zero. (The positive value at the entropies of all compounds at temperature above absolute zero result from the fact as the temperature is raised, more and more energy levels become accessible to the molecules. The entropy at such temperature is, of course very characteristic of the individual molecule, since each molecule has its own particular energy level pattern.)

The discrepancies between calculated and third law entropies can now be attributed to a nonzero value of the entropy at absolute zero. Thus we must explain absolute zero entropy of, for example, about 4.3 J K-1 mol-1 for CO.

A disorder to be expected for such a material is that in which the molecular alignment in the crystal is not CO CO CO CO .... But rather a disorder pattern in the crystal like CO CO OC CO.... a crystal formed initially in this way could have the disorder "frozen" in as the temperature is lowered, there being too little thermal energy for the molecules to rearrange to the ordered structure. Thus, instead of each molecule having a single state to occupy, the randomness makes two states available to each molecule. The entropy of such a crystal can then be expected to be greater by k In 2N = R In 2 = 5.8 JK-1 mol-1 than it would be for a perfect crystal. This is, in fact, the approximate discrepancy found for CO.

Other types of disorder can now be expected to persist at absolute zero and to lead to apparent discrepancies in the third law. For example, a glassy material at entropy of zero will not have the necessary molecular order to guarantee as entropy of zero at absolute zero. In view of such difficulties, the third law statement must include the restriction that only perfectly ordered crystalline materials have zero entropy at absolute zero.

   Related Questions in Chemistry

  • Q : Einsteins mass energy relation In

    In Einstein’s mass energy relation e = mc2 for what is c employed or why is light needed for the reactions. As the reactions are with the help of neutrons?

  • Q : Calculating number of moles from

    Choose the right answer from following. If 0.50 mol of CaCl2 is mixed with 0.20 mol of Na3PO4, the maximum number of moles of Ca3 (PO2)2 which can be formed: (a) 0.70 (b) 0.50 (c) 0.20 (d) 0.10

  • Q : What is solvent dielectric effect?

    Ionic dissociation depends on the dielectric constant of the solvent.The Arrhenius that ions are in aqueous solutions in equilibrium with parent molecular species allows many of the properties of ionic solutions to be understood. But difficulties began to

  • Q : What do you mean by the term dipole

    What do you mean by the term dipole moment? Briefly describe it.

  • Q : Problem related to molarity Provide

    Provide solution of this question. Increasing the temperature of an aqueous solution will cause: (a) Decrease in molality (b) Decrease in molarity (c) Decrease in mole fraction (d) Decrease in % w/w

  • Q : Cations Chromium(III) hydroxide is

    Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer

  • Q : Explanation of oxygen family. Group 16

    Group 16 of periodic

  • Q : Problem on vapour pressure and mole

    Provide solution of this question. The vapour pressure of a solvent decreased by 10 mm of mercury, when a non-volatile solute was added to the solvent. The mole fraction of the solute in the solution is 0.2. What should be the mole fraction of the solvent, if decrea

  • Q : Molar mass Select the right answer of

    Select the right answer of the question. Which is heaviest: (a)25 gm of mercury (b)2 moles of water (c)2 moles of carbon dioxide (d)4 gm atoms of oxygen

  • Q : M ive me answer of this question. When

    ive me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the: (a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change