--%>

Laws of Chemical Combination

Laws of Chemical Combination- In order to understand the composition of the compounds, it is necessary to have a theory which accounts for both qualitative and quantitative observations during chemical changes. Observations of chemical reactions were most significant in the development of a satisfactory theory of the nature of matter. These observations of chemical reactions are summarized in certain statements known as laws of chemical combination. These are:

1-Law of conservation of mass

2-Law of constant composition

3-Law of multiple proportions

4-Law of reciprocal proportion

5-Law of combining volumes (Gay Lussac's law of gaseous volume)

1-Law of conservation of mass-This law deals with the masses of reactant & the products of any chemical reaction (or a physical change).It was studied by French chemist Antoine Lavoisier. This law may be stated as follow-In all the chemical & physical changes, the total mass of the reactants is equal to that of the products. . It is a derivation of Dalton's atomic theory 'atoms neither created nor destroyed'.

Total masses of [reactants=products+unreacted reactants]

For example-1-A piece of ice in flask (weighted) is heated gently to melt ice (solid) into water (liquid) & again weighted. It's found that there is no change in weight though a physical change has taken place.

2-If 5.2 g of CaCo2when heated produced 1.99 g of Carbon dioxide and the residue (CaO) left behind weighs 3.2g.

So the total weight of the products (CaO +CO2) = 3.20+ 1.99 = 5.19 g

 Difference between the wt. of the reactant and the total wt. of the products= 5.20 - 5.19 =0.01 g.

This small difference may be due to experimental error. Thus law of conservation of mass holds good with in experimental errors.

2-Law of constant composition or the definite proportions-This law was given by J.L.Proust & deals with the composition of elements present in a given compound. It states that- A chemical compound always contains same elements combined together in same proportion by mass. and it does not depend on the source of compound. For example-CO2 can be obtained by different method such as 

661_Law of constant composition.png

The composition of CO2 obtained by different means always having same C: O ratio =12/32 = 0.375 by mass.

Limitations of law of constant composition are-

(i)This law is not applicable if an element exists in different isotopes which may be involved in formation of compound.e.g.In the formation of CO2, if C-12 isotope & C-14 isotope combine than the C: O is 12:32 & 14:32 respectively.

(ii)The compounds formed may be different but the elements may combine in same ratio.

3-Law of multiple proportion: It was studied by Dalton, which defined as follow-

When two elements combine to form two or more than two different chemical compounds then the different masses of one element which combine with fixed mass of the other element bear a simple ratio to one another.

For example: Carbon forms two oxides in oxygen 

2190_Law of multiple proportion.png

 

The ratio of masses of oxygen in CO and CO2 for fixed mass of carbon (12) 
is 16 : 32 = 1: 2.

Similar with compounds of sulphur & oxygen-they also formed two oxides SO2 & SO3 so the ratio of masses of oxygen 32:48 or 2:3 respectively.

4-Law of reciprocal proportion: This law was given by Richter. It stated as follow-

If two elements combine separately with a fixed mass of a third element, then the ratio of their masses in which they do so is either same or multiple of the ratio in which they combine with each other. The above law is the basis of law of equivalent masses.

5-Law of combining volumes (Gay Lussac's law of gaseous volume) - It states that at a given temperature and pressure, when the gases combine they do so in volumes which bear a simple ratio to each other and also to the volume of gaseous product.

e.g. If one volume of hydrogen react with one volume of chlorine to form two volumes of hydrogen chloride gas. The ratio of volume of various reactant & product is 1:1:2 which is a simple whole number ratio. Similar in the formation of ammonia, the ratio of reactant nitrogen, hydrogen & ammonia is 1:3:2 which is a simple whole number ratio.

   Related Questions in Chemistry

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : Non-ideal Gases Fugacity The fugacity

    The fugacity is a pressure like quantity that is used to treat the free energy of nonideal gases.Now we begin the steps that allow us to relate free energy changes to the equilibrium constant of real, nonideal gases. The thermodynamic reaction 

  • Q : Questuion associated with colligative

    Provide solution of this question. Which of the following is a colligative property: (a) Surface tension (b) Viscosity (c) Osmotic pressure (d) Optical rotation

  • Q : P block why BiF3 is ionic whereas other

    why BiF3 is ionic whereas other trihalides are covalent in nature?

  • Q : What are homogenous catalyst? Give few

    When a catalyst mixes homogeneously with the reactants and forms a single phase, the catalyst is said to be homogeneous and this type of catalysis is called homogeneous catalysis. Some more examples of homogeneous catalysis are:    SO2

  • Q : Problems related to entropy change A)

    A) Two compartments each of 1 m3 capacity are joined by a valve and insulated from the surroundings and from one another. One compartment has saturated steam at 683.6 kPa and the other contains steam at the same temperature but at a pressure of 101.3 kPa. T

  • Q : Oxoacids of halogens Why oxidising

    Why oxidising character of oxoacids of halogens decreases as oxidation number increases?

  • Q : What do you mean by the term tripod

    What do you mean by the term tripod? Also state its uses?

  • Q : Explain oxygen and its preparation.

    Karl Scheele, the Swedish chemist, was

  • Q : Solubility are halides are halogens

    are halides are halogens more soluble? why?