--%>

Film Mass Transport

Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst:

SO2 + ½ O2 à SO3

The catalyst is a non-porous extrudate with the platinum deposited on the outside surface.  following data have been measured for the particle rate of reaction as a function of SO2 concentration in the bulk gas at 450 °C

Mass Velocity (G)

Lb/hr-ft2

SO2 Partial Pressure in Bulk

Atm

rP

gmol/h-gcat

514

0.0601

0.1346

350

0.0599

0.1278

245

0.0603

0.1215

147

0.0603

0.0956

 

The following data apply to this problem

εB (void fraction) =0.43

Catalyst = 1/8 x 1/8 inch (diameter x length) extrudates (Pt on surface only)

At (specific external surface area of catalyst) = 5.12 ft2/lb

DSO2/air = 1.1 ft2/h

μair = 0.09 lb/hr-ft

ρair = 0.0304 lb/ft3

 

Without calculating anything, what can you tell about the importance of film mass transport on this reaction? Explain briefly.

 

2.        Explain why mass transfer resistance reduces the global rate more at higher temperature than at lower temperature.  Assume no heat transfer resistances are present.

 

3.       A gas-phase catalytic reaction is taking place in a Packed Bed Reactor (PBR).  The system is isothermal but film mass transfer resistances are important.

a.       Would increasing the turbulence in the gas phase increase or decrease the global rate?

b.      If the system is not isothermal and the reaction is exothermic would increasing the turbulence increase or decrease the global rate?

 

4.       Experimental global rate data for the oxidation of SO2 over a non-porous platinum catalyst are given in the table below for two levels of conversion of SO2.  Estimate the importance of film mass transport from these data by calculating the concentration difference (for SO2) between the bulk gas and the catalyst surface.

DATA

a)      packed-bed reactor (PBR); catalyst consists of 1/8 x 1/8-inch (radius x length) tablets

b)      packing void fraction (εB) = 0.36

c)       superficial mass velocity (G) = 147 lb/hr-ft2

d)      Pressure = 790 mm Hg; Temperature (assume isothermal) = 480 °C

e)      Bulk gas concentration: 6.42 mol% SO2 and 93.58 mol% air

f)       Specific external surface area of catalyst (am) = 5.12 ft2/lb

 

 

Partial pressure (atm)

Fractional Conversion of SO2

rp

(lbmol/hr-ft2)

SO2

SO3

O2

0.1

0.0187

0.0603

0.0067

0.201

0.6

0.0037

0.0273

0.0409

0.187

 

rp = particle rate of reaction (rate per unit external surface area of catalyst)

5.  Cumene (C) is catalytically cracked to manufacture benzene (B) and propylene (P).  The following non-stoichiometric equation illustrates the chemistry:

                                                                C  à  B + P

Typical operating conditions for this reaction are a temperature and total pressure of 362 °C and 1.0 atm. respectively.  A measurement of the global rate of reaction was made in the laboratory, resulting in the following value for the rate of disappearance of cumene:

                                rp = 76.5 kmol/m2 - h

 

From the data supplied, is there any evidence of either heat and mass transfer limitations for this reaction?  Be as quantitative as possible in your explanation.

Assumptions

The catalyst particle is non-porous. All thermophysical properties (density, viscosity, thermal conductivity, etc.) of the bulk gas and gas in the film can be assumed to be constant.

Data

Average MW of gas = 34.37 kg/kmol

Gas density = 0.66 kg/m3

Gas viscosity = 0.094 kg/m - h

Gas thermal conductivity = 0.037 kcal/m - h - °C

Gas heat capacity = 33.0 kcal/kg - °C

G (mass velocity) = 56,470 kg/m2 - h

at = am = 45 m2/kg cat (specific external surface area of catalyst)

εB (bed void fraction) = 0.5

dp (catalyst particle diameter, equivalent sphere) = 0.1 cm

ΔHr (heat of reaction) = +41,816 kcal/kmol (endothermic)

Ea (activation energy for reaction) = 40 kcal/gmol

ρB (catalyst bulk density) = 5x105 g/m3

Sc (Schmidt number) = 1.483

   Related Questions in Chemistry

  • Q : Biodegradable polymers what are the

    what are the examples of biodegradable polymers

  • Q : What is adsorption and its examples. In

    In a liquid a solid substance a molecule present within the bulk of the substance is being attracted infirmly from all sides by the neighbouring molecules. Hence there is no bet force acting on the molecule or there are no unbalanced forces of the molecule. On the oth

  • Q : Thermodynamics 1 Lab Report I already

    I already did Materials and Methods section. I uploaded it with the instructions. Also, make sure to see Concept Questions and Thinking Ahead in the instructions that I uploaded. deadline is tomorow at 8 am here is the link to download all instructions because I couldn't attach all of t

  • Q : Value of molar solution Select the

    Select the right answer of the question. Molar solution contains: (a)1000g of solute (b)1000g of solvent (c)1 litre of solvent (d)1 litre of solution

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : Maximum vapour pressure Provide

    Provide solution of this question. Which solution will show the maximum vapour pressure at 300 K: (a)1MC12H22O11 (b)1M CH3 COOH (c) 1MNacl2 (d)1MNACl

  • Q : Reducible Representations The number of

    The number of times each irreducible representation occurs in a reducible representation can be calculated.Consider the C2v point group as described or Appendix C. you can see that (1) sum of

  • Q : Vapour pressure Vapour pressure of

    Vapour pressure of methanol in water Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water

  • Q : Problem on making solution Select the

    Select the right answer of the question. The weight of H2C2O42H2O required to prepare 500ml of 0.2N solution is : (a) 126g (b) 12.6g (c) 63g (d) 6.3g

  • Q : What do you mean by the term tripod

    What do you mean by the term tripod? Also state its uses?