--%>

Film Mass Transport

Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst:

SO2 + ½ O2 à SO3

The catalyst is a non-porous extrudate with the platinum deposited on the outside surface.  following data have been measured for the particle rate of reaction as a function of SO2 concentration in the bulk gas at 450 °C

Mass Velocity (G)

Lb/hr-ft2

SO2 Partial Pressure in Bulk

Atm

rP

gmol/h-gcat

514

0.0601

0.1346

350

0.0599

0.1278

245

0.0603

0.1215

147

0.0603

0.0956

 

The following data apply to this problem

εB (void fraction) =0.43

Catalyst = 1/8 x 1/8 inch (diameter x length) extrudates (Pt on surface only)

At (specific external surface area of catalyst) = 5.12 ft2/lb

DSO2/air = 1.1 ft2/h

μair = 0.09 lb/hr-ft

ρair = 0.0304 lb/ft3

 

Without calculating anything, what can you tell about the importance of film mass transport on this reaction? Explain briefly.

 

2.        Explain why mass transfer resistance reduces the global rate more at higher temperature than at lower temperature.  Assume no heat transfer resistances are present.

 

3.       A gas-phase catalytic reaction is taking place in a Packed Bed Reactor (PBR).  The system is isothermal but film mass transfer resistances are important.

a.       Would increasing the turbulence in the gas phase increase or decrease the global rate?

b.      If the system is not isothermal and the reaction is exothermic would increasing the turbulence increase or decrease the global rate?

 

4.       Experimental global rate data for the oxidation of SO2 over a non-porous platinum catalyst are given in the table below for two levels of conversion of SO2.  Estimate the importance of film mass transport from these data by calculating the concentration difference (for SO2) between the bulk gas and the catalyst surface.

DATA

a)      packed-bed reactor (PBR); catalyst consists of 1/8 x 1/8-inch (radius x length) tablets

b)      packing void fraction (εB) = 0.36

c)       superficial mass velocity (G) = 147 lb/hr-ft2

d)      Pressure = 790 mm Hg; Temperature (assume isothermal) = 480 °C

e)      Bulk gas concentration: 6.42 mol% SO2 and 93.58 mol% air

f)       Specific external surface area of catalyst (am) = 5.12 ft2/lb

 

 

Partial pressure (atm)

Fractional Conversion of SO2

rp

(lbmol/hr-ft2)

SO2

SO3

O2

0.1

0.0187

0.0603

0.0067

0.201

0.6

0.0037

0.0273

0.0409

0.187

 

rp = particle rate of reaction (rate per unit external surface area of catalyst)

5.  Cumene (C) is catalytically cracked to manufacture benzene (B) and propylene (P).  The following non-stoichiometric equation illustrates the chemistry:

                                                                C  à  B + P

Typical operating conditions for this reaction are a temperature and total pressure of 362 °C and 1.0 atm. respectively.  A measurement of the global rate of reaction was made in the laboratory, resulting in the following value for the rate of disappearance of cumene:

                                rp = 76.5 kmol/m2 - h

 

From the data supplied, is there any evidence of either heat and mass transfer limitations for this reaction?  Be as quantitative as possible in your explanation.

Assumptions

The catalyst particle is non-porous. All thermophysical properties (density, viscosity, thermal conductivity, etc.) of the bulk gas and gas in the film can be assumed to be constant.

Data

Average MW of gas = 34.37 kg/kmol

Gas density = 0.66 kg/m3

Gas viscosity = 0.094 kg/m - h

Gas thermal conductivity = 0.037 kcal/m - h - °C

Gas heat capacity = 33.0 kcal/kg - °C

G (mass velocity) = 56,470 kg/m2 - h

at = am = 45 m2/kg cat (specific external surface area of catalyst)

εB (bed void fraction) = 0.5

dp (catalyst particle diameter, equivalent sphere) = 0.1 cm

ΔHr (heat of reaction) = +41,816 kcal/kmol (endothermic)

Ea (activation energy for reaction) = 40 kcal/gmol

ρB (catalyst bulk density) = 5x105 g/m3

Sc (Schmidt number) = 1.483

   Related Questions in Chemistry

  • Q : Quantum Mechanical Operators The

    The quantum mechanical methods, illustrated previously by the Schrödinger equation, are extended by the use of operators. Or, w

  • Q : Problem on preparing of a solution Give

    Give me answer of this question. How many grams of CH3OH should be added to water to prepare 150 solution of@M CH3 OH: (a) 9.6 (b) 2.4 (c) 9.6x 103 (d) 2.4 x103

  • Q : Explain Photoelectron Spectroscopy. The

    The energies of both the outer and inner orbitals of atoms and molecules can be determined by photoelectron spectroscopy.Energy changes of the outermost or highest energy electron of molecules were dealt with here in a different passion. The energies of ot

  • Q : Problems related to entropy change A)

    A) Two compartments each of 1 m3 capacity are joined by a valve and insulated from the surroundings and from one another. One compartment has saturated steam at 683.6 kPa and the other contains steam at the same temperature but at a pressure of 101.3 kPa. T

  • Q : Molarity A solution has volume 200ml

    A solution has volume 200ml and molarity 0.1.if it is diluted 5times then calculate the molarity of reasulying solution and the amount of water added to it.

  • Q : Mole fraction in vapours Choose the

    Choose the right answer from following. If two substances A and B have P0A P0B= 1:2 and have mole fraction in solution 1 : 2 then mole fraction of A in vapours: (a) 0.33 (b) 0.25 (c) 0.52 (d) 0.2

  • Q : Concentration of Calcium carbonate Help

    Help me to go through this problem. 1000 gms aqueous solution of CaCO3 contains 10 gms of carbonate. Concentration of the solution is : (a)10 ppm (b)100 ppm (c)1000 ppm (d)10000 ppm

  • Q : Diffusion Molecular View When the

    When the diffusion process is treated as the movement of particles through a solvent the diffusion coefficient can be related to the effective size of diffusing particles and the viscosity of the medium.To see how the experimental coefficients can be treat

  • Q : Explosions produce carbon dioxide

    Illustrate all the explosions produce carbon dioxide?

  • Q : Relationship between Pressure and

    The pressure-temperature relation for solid-vapor or liquid vapor equilibrium is expressed by the Clausis-Clapeyron equation.We now obtain an expression for the pressure-temperature dependence of the state of equilibrium between two phases. To be specific,