--%>

Film Mass Transport

Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst:

SO2 + ½ O2 à SO3

The catalyst is a non-porous extrudate with the platinum deposited on the outside surface.  following data have been measured for the particle rate of reaction as a function of SO2 concentration in the bulk gas at 450 °C

Mass Velocity (G)

Lb/hr-ft2

SO2 Partial Pressure in Bulk

Atm

rP

gmol/h-gcat

514

0.0601

0.1346

350

0.0599

0.1278

245

0.0603

0.1215

147

0.0603

0.0956

 

The following data apply to this problem

εB (void fraction) =0.43

Catalyst = 1/8 x 1/8 inch (diameter x length) extrudates (Pt on surface only)

At (specific external surface area of catalyst) = 5.12 ft2/lb

DSO2/air = 1.1 ft2/h

μair = 0.09 lb/hr-ft

ρair = 0.0304 lb/ft3

 

Without calculating anything, what can you tell about the importance of film mass transport on this reaction? Explain briefly.

 

2.        Explain why mass transfer resistance reduces the global rate more at higher temperature than at lower temperature.  Assume no heat transfer resistances are present.

 

3.       A gas-phase catalytic reaction is taking place in a Packed Bed Reactor (PBR).  The system is isothermal but film mass transfer resistances are important.

a.       Would increasing the turbulence in the gas phase increase or decrease the global rate?

b.      If the system is not isothermal and the reaction is exothermic would increasing the turbulence increase or decrease the global rate?

 

4.       Experimental global rate data for the oxidation of SO2 over a non-porous platinum catalyst are given in the table below for two levels of conversion of SO2.  Estimate the importance of film mass transport from these data by calculating the concentration difference (for SO2) between the bulk gas and the catalyst surface.

DATA

a)      packed-bed reactor (PBR); catalyst consists of 1/8 x 1/8-inch (radius x length) tablets

b)      packing void fraction (εB) = 0.36

c)       superficial mass velocity (G) = 147 lb/hr-ft2

d)      Pressure = 790 mm Hg; Temperature (assume isothermal) = 480 °C

e)      Bulk gas concentration: 6.42 mol% SO2 and 93.58 mol% air

f)       Specific external surface area of catalyst (am) = 5.12 ft2/lb

 

 

Partial pressure (atm)

Fractional Conversion of SO2

rp

(lbmol/hr-ft2)

SO2

SO3

O2

0.1

0.0187

0.0603

0.0067

0.201

0.6

0.0037

0.0273

0.0409

0.187

 

rp = particle rate of reaction (rate per unit external surface area of catalyst)

5.  Cumene (C) is catalytically cracked to manufacture benzene (B) and propylene (P).  The following non-stoichiometric equation illustrates the chemistry:

                                                                C  à  B + P

Typical operating conditions for this reaction are a temperature and total pressure of 362 °C and 1.0 atm. respectively.  A measurement of the global rate of reaction was made in the laboratory, resulting in the following value for the rate of disappearance of cumene:

                                rp = 76.5 kmol/m2 - h

 

From the data supplied, is there any evidence of either heat and mass transfer limitations for this reaction?  Be as quantitative as possible in your explanation.

Assumptions

The catalyst particle is non-porous. All thermophysical properties (density, viscosity, thermal conductivity, etc.) of the bulk gas and gas in the film can be assumed to be constant.

Data

Average MW of gas = 34.37 kg/kmol

Gas density = 0.66 kg/m3

Gas viscosity = 0.094 kg/m - h

Gas thermal conductivity = 0.037 kcal/m - h - °C

Gas heat capacity = 33.0 kcal/kg - °C

G (mass velocity) = 56,470 kg/m2 - h

at = am = 45 m2/kg cat (specific external surface area of catalyst)

εB (bed void fraction) = 0.5

dp (catalyst particle diameter, equivalent sphere) = 0.1 cm

ΔHr (heat of reaction) = +41,816 kcal/kmol (endothermic)

Ea (activation energy for reaction) = 40 kcal/gmol

ρB (catalyst bulk density) = 5x105 g/m3

Sc (Schmidt number) = 1.483

   Related Questions in Chemistry

  • Q : What are biodegradable polymers?

      These are polymers that can be broken into small segments by enzyme-catalysed reactions. The required enzymes are produced by microorganism. It is a known fact that the carbon-carbon bonds of chain growth polymers are inert to enzyme-catalysed reactions, and hence they are non biod

  • Q : Osmotic Pressure The O.P. (Osmotic

    The O.P. (Osmotic Pressure) of equimolar solution of Urea, BaCl2 and AlCl3, will be in the order:(a) AlCl3 > BaCl2 > Urea  (b) BaCl2 > AlCl3 > Urea  (c) Urea > BaCl2<

  • Q : Structure of a DNA molecule Elaborate

    Elaborate the structure of a DNA molecule?

  • Q : Nuclear Magnetic Resonance The nuclear

    The nuclear states produced by a magnetic field are studied in nuclear magnetic resonance spectroscopy.The frequency of the radiation that corresponds to the nuclear magnetic energy level spacings and the weakness of the radiation absorption that must be e

  • Q : Molarity based question Help me to

    Help me to solve this problem. 4.0 gm of NaOH are contained in one decilitre of solution. Its molarity would be: (a) 4 M (b)2 M (c)1 M (d)1.5 M

  • Q : Concentration of Sodium chloride

    Provide solution of this question. If 25 ml of 0.25 M NaCl solution is diluted with water to a volume of 500ml the new concentration of the solution is : (a) 0.167 M (b) 0.0125 M (c) 0.833 M (d) 0.0167 M

  • Q : Crystals of covalent compounds Crystals

    Crystals of the covalent compounds always contain:(i) Atoms as their structural units  (ii) Molecules as structural units  (iii) Ions held altogether by electrostatic forces (iv) High melting pointsAnswer: (i)

  • Q : Vander Waals forces Wax is an example

    Wax is an example of: (a) Ionic crystal  (b) Covalent crystal  (c) Metallic crystal  (d) Molecular crystalAnswer: (d) Iodine crystals are molecular crystals, in which constituent particles are molecules having inter particle

  • Q : Metallic chemistry why transation

    why transation metals show charaterstic colours to the flame?

  • Q : What are lattices and unit cells? The

    The repeating, atomic level structure of a crystal can be represented by a lattice and by the repeating unit of the lattice, the unit cell.It was apparent very early in the study of crystals that the shapes of crystals stem from an ordered array of smaller