--%>

What are the chemical properties of haloalkanes?

Haloalkanes are extremely reactive category of aliphatic compounds. Their reactivity is due to the presence of polar carbon-halogen bond in their molecules.


The chemical reactions of haloalkanes can be divided into four ways:
    
Nucleophilic substitution reactions

In haloalkanes, the halogen atoms are attached to the carbon atom. The bond between carbon and halogen is polar in character because the halogen atom is more electronegative than carbon.

Due to the presence of partial positive charge on the carbon atom, the nucleophilies can attack on electron deficient carbon thereby resulting the displacement of weaker nucleophile is generally stronger than it.

The order of reactivity of various alkyl halides towards nucleophilic substitution in the order:

Order of reactivity: RI > RBr > RCI > RF

This order of reactivity can be explained on the basis of strength of C-X bond. The C-X bond is the weakest in R-I and the strongest in R-F as is clear from the bond energy data for methyl halides. In fact, the C-F bond is so strong that organic fluorides do not undergo nucleophilic substitution under ordinary conditions.

Bond

C-I

C-Br

C-Cl

C-F

Bond Enthalpies (kJ/mole)

234

293

351

452

Bond length (pm)

214

193

178

139

Dipole moment (Debye)

1.636

1.830

1.860

1.847


Examples of nucleophilic substitution reactions of haloalkanes
    
Replacement of hydroxyl group (Formation of alcohols).

Haloalkanes on treatment with aqueous solution of KOH or moist silver oxide (Ag2O/H2O) give alcohols.
                        
2388_haloalkanes.png 
    
Replacement Alkoxy group (Formation of ethers). (Williamson Synthesis):

Haloalkanes on treatment with alcoholic sodium or potassium alkoxide form ethers. This reaction is called as Williamson Synthesis.
        
1935_haloalkanes1.png 

Ethers can also be prepared by heating alkyl halides with dry silver oxide, Ag2O
                
1005_haloalkanes3.png  
    
Replacement by Cyano Group (Formation of cyanides or nitrites)

Haloalkanes on treatment with alcoholic KCN solution give alkanenitriles or alkyl cyanides as the major product with a small amount of alkyl isocyanide.

2173_haloalkanes2.png 

The reaction of alkyl halides with KCN gives us an important method for increasing the length of carbon chain by one carbon atom i.e. rising of series.

   Related Questions in Chemistry

  • Q : Colligative properties give atleast two

    give atleast two application of following colligative properties

  • Q : Biodegradable polymers what are the

    what are the examples of biodegradable polymers

  • Q : Nuclear Magnetic Resonance The nuclear

    The nuclear states produced by a magnetic field are studied in nuclear magnetic resonance spectroscopy.The frequency of the radiation that corresponds to the nuclear magnetic energy level spacings and the weakness of the radiation absorption that must be e

  • Q : Hydrocarbons list and identify

    list and identify differences between the major classes of hydrocarbons

  • Q : Problem on decomposition reaction

    Nitrogen tetroxide (melting point: -11.2°C, normal boiling point 21.15°C) decomposes into nitrogen dioxide according to the following reaction: N2O4(g) ↔ 2 NO2(g)<

  • Q : What is cannizaro reaction? Explain

    Aldehydes which do not have  -hydrogen atom, such as formaldehyte and benzaldehyte, when heated with concentrated (50%)alkali solutio

  • Q : Question on Raoults law Give me answer

    Give me answer of this question. For a dilute solution, Raoult's law states that: (a) The lowering of vapour pressure is equal to mole fraction of solute (b) The relative lowering of vapour pressure is equal to mole fraction of solute (c) The relative lowering of v

  • Q : Molar mass Select the right answer of

    Select the right answer of the question. Which is heaviest: (a)25 gm of mercury (b)2 moles of water (c)2 moles of carbon dioxide (d)4 gm atoms of oxygen

  • Q : Problem on normality Help me to solve

    Help me to solve this problem. 0.5 M of H2AO4 is diluted from 1 lire to 10 litre, normality of resulting solution is : (a)1 N (b) 0.1 N (c)10 N (d)11 N

  • Q : Molar mass of compound The freezing

    The freezing point of a solution having 4.8 g of a compound in 60 g of benzene is 4.48. Determine the molar mass of the compound (Kf = 5.1 Km-1) , (freezing point of  benzene = 5.5oC)          &n