--%>

Explain methods for industrial preparation of alcohol.

The important methods for the preparation of alcohol on large-scale are given below:
    
By hydration of Alkenes

Alkenes are obtained by cracking of petroleum. They are easily converted to alcohols by the addition of water in presence of sulphuric acid.
                                 
1907_alcohol preparation.png 

In case of unsymmetrical alkenes, the addition takes place according to Markowniko's rule.
                          
681_alcohol preparation1.png 
    
By fermentation of carbohydrates

Formation of ethyl alcohol by the fermentation of sugar (obtained from molasses, grapes or beet) is one of the oldest methods. Sucrose is first of all changed to glucose and fructose with an enzyme invertase.
                                
1330_alcohol preparation2.png 

Enzyme zymase after that converts glucose and fructose into ethanol.

The enzyme zymase is present in yeast.
                              
65_alcohol preparation3.png 

The fermentation procedure is taken out under anaerobic conditions i.e. in the nonexistence of air. Carbon dioxide released during fermentation keeps the fermentation mixture out of contact of air. If the fermentation mixture gets exposed to air, the oxygen of air oxidizes ethanol to ethanoic acid which makes the mixture sour.

Ethanol is obtained from starchy materials such as barley, rice, maize and potatoes with enzymes diastase and maltase.
                        
1057_alcohol preparation4.png 

Enzyme diastase is obtained from germinated barley while enzyme maltase and zymase are obtained from yeast.
    
Oxo process

Alkenes react with carbon monoxide and hydrogen in the presence of Octacarbonyl dicobalt Co[CO]
                       
1121_alcohol preparation5.png

   Related Questions in Chemistry

  • Q : Problem based on molarity Select the

    Select the right answer of the question. If 18 gm of glucose (C6H12O6) is present in 1000 gm of an aqueous solution of glucose, it is said to be: (a)1 molal (b)1.1 molal (c)0.5 molal (d)0.1 molal

  • Q : Metallic chemistry why transation

    why transation metals show charaterstic colours to the flame?

  • Q : Dipole attractions for london dispersion

    Illustrate how are dipole attractions London dispersion forces and hydrogen bonding similar?

  • Q : Problem on vapor-liquid equilibrium Two

    Two tanks which contain water are connected to each other through a valve. The initial conditions are as shown (at equilibrium): 683_tank question.jpg

  • Q : What is Henry law constant and its

    1. The units of Henry Law constant are same as those of pressure, i.e. torr or h bar. 2. Different gases have dissimilar values of Henry law constant. The values of KH for some gases in water are given in tabl

  • Q : DNA Organic Explain DNA organic in

    Explain DNA organic in brief?

  • Q : Mole fraction of benzene Choose the

    Choose the right answer from following. In a solution of 8.7g benzene C6H6 and 46.0 gm toluene ,(C6, H5, CH3) the mole fraction of benzene in this solution is: (a)1/6 (b)1/5 (c)1/2 (d)1/3

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.

  • Q : Finding Molarity of final mixture Can

    Can someone help me in finding out the right answer. 25ml of 3.0 MHNO3 are mixed with 75ml of 4.0 MHNO3. If the volumes are adding up the molarnity of the final mixture would be: (a) 3.25M (b) 4.0M (c) 3.75M (d) 3.50M

  • Q : Pressure Phase Diagrams The occurrence

    The occurrence of different phases of a one component system can be shown on a pressure temperature. The phases present in a one line system at various temperatures can be conveniently presented on a P- versus-T diagram. An example is pro