--%>

Explain methods for industrial preparation of alcohol.

The important methods for the preparation of alcohol on large-scale are given below:
    
By hydration of Alkenes

Alkenes are obtained by cracking of petroleum. They are easily converted to alcohols by the addition of water in presence of sulphuric acid.
                                 
1907_alcohol preparation.png 

In case of unsymmetrical alkenes, the addition takes place according to Markowniko's rule.
                          
681_alcohol preparation1.png 
    
By fermentation of carbohydrates

Formation of ethyl alcohol by the fermentation of sugar (obtained from molasses, grapes or beet) is one of the oldest methods. Sucrose is first of all changed to glucose and fructose with an enzyme invertase.
                                
1330_alcohol preparation2.png 

Enzyme zymase after that converts glucose and fructose into ethanol.

The enzyme zymase is present in yeast.
                              
65_alcohol preparation3.png 

The fermentation procedure is taken out under anaerobic conditions i.e. in the nonexistence of air. Carbon dioxide released during fermentation keeps the fermentation mixture out of contact of air. If the fermentation mixture gets exposed to air, the oxygen of air oxidizes ethanol to ethanoic acid which makes the mixture sour.

Ethanol is obtained from starchy materials such as barley, rice, maize and potatoes with enzymes diastase and maltase.
                        
1057_alcohol preparation4.png 

Enzyme diastase is obtained from germinated barley while enzyme maltase and zymase are obtained from yeast.
    
Oxo process

Alkenes react with carbon monoxide and hydrogen in the presence of Octacarbonyl dicobalt Co[CO]
                       
1121_alcohol preparation5.png

   Related Questions in Chemistry

  • Q : Concentration of Calcium carbonate Help

    Help me to go through this problem. 1000 gms aqueous solution of CaCO3 contains 10 gms of carbonate. Concentration of the solution is : (a)10 ppm (b)100 ppm (c)1000 ppm (d)10000 ppm

  • Q : Number of electrons in the benzene

    Describe the number of electrons in the benzene? Write a short note on it?

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft

  • Q : Chemists have not created a periodic

    Explain the reason behind that the chemists have not created a periodic table of compounds?

  • Q : Analytical chemistry 37% weight of HCl

    37% weight of HCl and density is 1.1g/ml. find molarity of HCl

  • Q : Direction of dipole moment expected

    Illustrate the direction of the dipole moment expected for hydrogen bromide?

  • Q : Freezing point of equimolal aqueous

    The freezing point of equi-molal aqueous solution will be maximum for:            (a) C6H5NH3+Cl-(aniline hydrochloride)  (b) Ca(NO3

  • Q : Vapour pressure of benzene Give me

    Give me answer of this question. The vapour pressure of benzene at a certain temperature is 640mm of Hg. A non-volatile and non-electrolyte solid weighing 2.175g is added to 39.08g of benzene. The vapour pressure of the solution is 600,mm of Hg . What is the mo

  • Q : How reactive is Trimethylindium towards

    Illustrate the reason, how reactive is Trimethylindium towards oxygen and water?

  • Q : Problem based on molecular weight

    Select the right answer of the question. Molecular weight of urea is 60. A solution of urea containing 6g urea in one litre is : (a)1 molar (b)1.5 molar (c) 0.1 molar (d) 0.01 molar