--%>

Explain methods for industrial preparation of alcohol.

The important methods for the preparation of alcohol on large-scale are given below:
    
By hydration of Alkenes

Alkenes are obtained by cracking of petroleum. They are easily converted to alcohols by the addition of water in presence of sulphuric acid.
                                 
1907_alcohol preparation.png 

In case of unsymmetrical alkenes, the addition takes place according to Markowniko's rule.
                          
681_alcohol preparation1.png 
    
By fermentation of carbohydrates

Formation of ethyl alcohol by the fermentation of sugar (obtained from molasses, grapes or beet) is one of the oldest methods. Sucrose is first of all changed to glucose and fructose with an enzyme invertase.
                                
1330_alcohol preparation2.png 

Enzyme zymase after that converts glucose and fructose into ethanol.

The enzyme zymase is present in yeast.
                              
65_alcohol preparation3.png 

The fermentation procedure is taken out under anaerobic conditions i.e. in the nonexistence of air. Carbon dioxide released during fermentation keeps the fermentation mixture out of contact of air. If the fermentation mixture gets exposed to air, the oxygen of air oxidizes ethanol to ethanoic acid which makes the mixture sour.

Ethanol is obtained from starchy materials such as barley, rice, maize and potatoes with enzymes diastase and maltase.
                        
1057_alcohol preparation4.png 

Enzyme diastase is obtained from germinated barley while enzyme maltase and zymase are obtained from yeast.
    
Oxo process

Alkenes react with carbon monoxide and hydrogen in the presence of Octacarbonyl dicobalt Co[CO]
                       
1121_alcohol preparation5.png

   Related Questions in Chemistry

  • Q : What is Ideal Mixtures Ideal mixing

    Ideal mixing properties can be recognized in the formation of an ideal gas mixture from ideal gases. Consider the formation of a mixture of gases i.e. a gaseous solution, from two mixtures of pure gases. A useful characterization of an ideal mixture, or soluti

  • Q : Explain the process of adsorption in

    The process of adsorption can occurs in solutions also. This implies that the solid surfaces can also adsorb solutes from solutions. Some clarifying examples are listed below: (i) When an aqueous solution of ethano

  • Q : BASIC CHARACTER OF AMINES IN GAS PHASE,

    IN GAS PHASE, BASICITIES OF THE AMINES IS JUST OPPOSITE TO BASICITY OF AMINES IN AQEUOUS PHASE .. EXPLAIN

  • Q : Problem on normality Help me to solve

    Help me to solve this problem. 0.5 M of H2AO4 is diluted from 1 lire to 10 litre, normality of resulting solution is : (a)1 N (b) 0.1 N (c)10 N (d)11 N

  • Q : Explain polyhalogen compounds with

    Carbon compounds containing more than one halogen atom are called polyhalogen compounds. Most of these compounds are valuable in industry and agriculture. Some important polyhalogen compounds are described as follows:

    Q : Liquid surfaces The surface between a

    The surface between a liquid and a vapour distinguishes these fluids. The surface tension of liquids can be looked upon as that the property which draws a liquid together and forms a liquid vapour interface, therefore, distinguishing liquids from gases.<

  • Q : Problem on distribution law The

    The distribution law is exerted for the distribution of basic acid among: (i) Water and ethyl alcohol (ii) Water and amyl alcohol (iii) Water and sulphuric acid (iv) Water and liquor ammonia What is the right answer.

  • Q : Neutralization of sodium hydroxide How

    How much of NaOH is needed to neutralise 1500 cm3 of 0.1N HCl (given = At. wt. of Na =23): (i) 4 g  (ii) 6 g (iii) 40 g  (iv) 60 g

  • Q : Decinormal concentration of Sulfuric

    Give me answer of this question. The volume of water to be added to 100cm3 of 0.5 N N H2SO4 to get decinormal concentration is : (a) 400 cm3 (b) 500cm3 (c) 450cm3 (d)100cm3

  • Q : Describe Thermodynamics Properties The

    The free energy property leads to convenient expressions for the volume and pressure dependence of internal energy, enthalpy and the heat capacities.All the properties of a chemical system, a sample of a substance, or a mixture of substances have some fixe