--%>

Ions in solution, acids and bases and volumetric analysis

The accuracy of your written English will be taken into account in marking.

1.    (a)   Identify the spectator ions in the following equation                                                   

        Cl2  (aq)  +  2 K+ (aq)  +  2 Br- (aq)  →  Br2 (aq)  +  2 K+ (aq)  +  2 Cl- (aq)

       (b)   Rewrite the equation to give the net ionic reaction.                                                    

Use the solubility guidelines below to help you answer question 2

Cation

Anion

Cl-. Br-, I-

SO42-

CO32-

OH-

NO3-

Na+, K+

S

S

S

S

S

Mg2+

S

S

X

X

S

Ca2+

S

X

X

Sparingly

S

Ba2+

S

X

X

Sparingly

S

Al3+

S

S

-

X

S

Zn2+

S

S

X

X

S

Pb2+

X

X

X

X

S

Ag+

X

Sparingly

X

-

S

                                       S = Soluble, X = insoluble, - = no salt

2.      An unlabelled bottle contained a solution of one of the following:  AgNO3, CaCl2 or Al2(SO4)3.  In order to establish the identity of this solution known samples of AgNO3, CaCl2 and Al2(SO4)3 were reacted separately with Ba(NO3)3 and then with NaCl.  

(a)    Copy the table below and complete it to indicate whether or not a precipitate was obtained in these reactions.  Write the formula of any precipitates produced.                                       

Compound

Ba(NO3)2 result

NaCl result

AgNO3 (aq)

 

 

CaCl2 (aq)

 

 

Al2(SO4)3 (aq)

 

 

(b)    Write (i) a balanced equation and (ii) a net ionic equation for the reactions that occur.  Include state symbols.  Identify the spectator ion(s) in the solutions.                                                 

(c)    What difference (if any) would there be in the reactions if sodium chloride were to be replaced by potassium chloride?                                                                                                      

3.      Magnesium carbonate, magnesium oxide and magnesium hydroxide are all white solids that react with acidic solutions.

(a)    Write a balanced equation and an ionic equation for the reaction that occurs when each substance reacts with a hydrochloric acid solution.  Include state symbols.                                     

(b)    By observing the reactions in part (a) could you distinguish any of the three magnesium substances from the other two?  If so, how?                                                                                          

(c)    If excess HCl (aq) is added, would the clear solution left behind after each reaction is complete contain the same or different ions in each case?  Identify the ions present.                                 

4.    Nitrous acid engages in a proton-transfer reaction with the methanoate ion, HCO2-  :

  HNO2(aq)     +  HCO2-  (aq)    ↔    NO2(aq)    + HCO2H (aq)

(a)    For the forward reaction identify the acid and base.                                                   

(b)    Identify the acid and base for the reverse reaction.                                               

(c)   Identify the conjugate of HNO2.  Is it the conjugate acid or the conjugate base?          

(d)   Identify the other conjugate acid-base pair and classify each species as the acid or the base.                    

5.    Calculate

       (a)   the number of grams of solute in 250 cm3 of 0.175 mol dm-3 KBr;

       (b)   the molar concentration of a solution containing 14.75 g of Ca(NO3)2 in 1.375 dm3;

       (c)   the volume of 1.50 mol dm-3 Na3PO4, in cm3, that contains 2.50 g of solute.

       Express your answer to the correct number of significant figures.                            

6.    A solution of NaCl has a concentration of 0.100 mol dm-3

       (a)   What is the concentration of the NaCl solution in ppm (mg dm-3)?                       

       (b)   What are the concentrations in ppm of the Na+ and Cl- ions?                                   

7.      A solution of 0.204 mol dm-3 sodium hydroxide (NaOH) was used to neutralise 50.0 cm3 phosphoric acid (H3PO4) and 16.4 cm3 of sodium hydroxide solution was required to reach the end-point.               

(a)   Write a balanced equation for the reaction involved.                                                   

       (b)   Calculate the number of moles of sodium hydroxide used in the titration.                

(c)   Calculate the number of moles of sodium phosphate formed in the titration.         

       (d)   Calculate the concentration of the phosphoric acid solution?                                  

8.    (a)   In order to standardise a solution of sodium hydroxide, a chemist first prepared a solution of ethanedioic acid-2-water, HOOC-COOH·2H2O, by dissolving 14.6 g of ethanedioic acid-2-water in water and making the solution up to 250 cm3 in a graduated flask.  He then pipetted 25.0 cm3 of this solution into a conical flask, added phenolphthalein solution as indicator, and titrated it against the sodium hydroxide solution: 24.1 cm3 of the latter were required.

(i)    Draw a display structure for ethanedioic acid                                                 

(ii)   Hence write a balanced equation for the reaction between the acid (HOOC-COOH) and sodium hydroxide (NaOH).  

(iii)  Calculate the number of moles of the acid, HOOC-COOH·2H2O in 25.0 cm3   

(iv)  Calculate the concentration of the sodium hydroxide solution.                      

(b)   The chemist then used the standardised sodium hydroxide to estimate the concentration of sulphuric acid from a car battery.  He found that 2.00 cm3 of battery acid were neutralised by 20.7 cm3 of the sodium hydroxide solution. Calculate the concentration of sulphuric acid in the battery acid, first in mol per dm3 and then in grams per dm3.                                                                                                

(c)   Why does the student have to calculate the concentration of the sodium hydroxide using this titration method rather than just weighing out a given amount and dissolving it in a known volume of water?                                      

 

                                                                                                                     

 

 

   Related Questions in Chemistry

  • Q : What is protein in Chemistry Illustrate

    Illustrate what is protein in Chemistry?

  • Q : Molarity of Nacl solution When 5.85 g

    When 5.85 g of NaCl (having molecular weight 58.5) is dissolved in water and the solution is prepared to 0.5 litres, the molarity of the solution is: (i) 0.2 (ii) 0.4 (iii) 1.0 (iv) 0.1

  • Q : Problem on equilibrium composition The

    The catalytic dehydrogenation of 1-butene to 1,3-butadiene, C4H8(g) = C4H6(g)+H2(g) is carried out at 900 K and 1 atm.

    Q : What are heterogenous catalysis? Give

    When the catalyst exists in a different phase than that of reactants, it is said to be heterogeneous catalyst, and the catalysis is called heterogeneous catalysis. For example, SO2 can be oxidized to SO3

  • Q : What are aliphatic amines and its

    In common system, the aliphatic amines are named by using prefix for alkyl group followed by the word amine.In case of mixed amines, the name of alkyl groups are arranged in alphabetical order. This is followed by the word amine. However, for simple secondary or tertiary amines anothe

  • Q : Equimolar solutions Select the right

    Select the right answer of the question. Equimolar solutions in the same solvent have : (a)Same boiling point but different freezing point (b) Same freezing point but different boiling poin (c)Same boiling and same freezing points (d) Different boiling and differe

  • Q : Vapour pressure of volatile substance

    Provide solution of this question. According to Raoult's law the relative lowering of vapour pressure of a solution of volatile substance is equal to: (a) Mole fraction of the solvent (b) Mole fraction of the solute (c) Weight percentage of a solute (d) Weight perc

  • Q : Organic and inorganic chemistry Write

    Write down a short note on the differences between the organic and inorganic chemistry?

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Infrared Adsorption The adsorption of

    The adsorption of infrared radiation by diatomic molecules increases the vibrational energy fo molecules and gives information about the force constant for the "spring" of the molecule.;The molecular motion that has the next larger energy level spacing aft