--%>

Theory of one dimensional motion

For motion in one dimension, the distribution of the molecules over quantum states, speeds, and energies can be deduced.

Here we show that the energy of a macroscopic gas sample can be described on the basis of our knowledge of the quantum states allowed to the molecules of the gas and the distribution expressed by the Boltzmann expression. We begin by studying the translational motion in one dimension of a collection of molecules. You will see how the procedure is fascillated by the partition function.

Partition function: the molecules of a gas that move along one dimension can have, any of the energies given by

1676_one dimensional motion.png 

For gas samples we can assume a cubic container and express a as V1/3, where V is the volume of the sample.

The partition function for one-dimensional translational motion can be developed by recognizing that
    
The translational energy of the lowest-energy state is small compared with the energies of most of the populated states and can be set equal to zero.
    
The translational-energy spacing between successive energy levels is small compared with the range of energies of the populated states.
    
The degeneracy of each energy level is unity.

On this basis, the partition function summation over the translational energies can be replaced by integration, and the partition function is expressed as

83_one dimensional motion1.png 

The integral is one of the definite integrals dealt by using the general result shown there, we obtain

1990_one dimensional motion2.png 

Example: calculate the partition function for the translational motion of N2 molecules free to move along one dimension of a 1-L cubic container. The temperature is 25°C.

Solution: the translational-energy factor h2/(8ma2) can be calculated conveniently from the expression of this equation. The mass of M of 1 mol of N2 molecules is 0.02801 kg, and V = 1 L = 10-3 m3. Thus
2163_one dimensional motion3.png 

962_one dimensional motion4.png 

= 1.180 × 10-40 J

The value of kT, to which the energy spacing factor is compared, is

kT = (1.3807 × 10-23 J K-1) (298.15 K) = 4.116 × 10-21 J

The partition function is calculated as

1331_one dimensional motion5.png 

this large partition function value indicates that very many states are available to the molecules. This result, in the calculations, from the smallness of h2/(8ma2compared to kT.

Average energy: the one dimensional translational energy of 1 mol of gas molecules can now be deduced. The general thermal-energy expression is

864_one dimensional motion6.png 

The partition function for one-dimensional translational motion gives
1661_one dimensional motion7.png 

substitution of the equation expressions in the equation for U - U0 gives

U - U0 = ½ RT

We have come by this long route to the result that we obtained from the simple classical kinetic-molecular theory. The translational energy per degree of freedom is ½ RT

   Related Questions in Chemistry

  • Q : What type of bond does HCl encompass

    What type of bond does HCl encompass? Describe briefly?

  • Q : Molar mass of compound The freezing

    The freezing point of a solution having 4.8 g of a compound in 60 g of benzene is 4.48. Determine the molar mass of the compound (Kf = 5.1 Km-1) , (freezing point of  benzene = 5.5oC)          &n

  • Q : Explain the process of coagulation of

    Presence of small concentrations of appropriate electrolyte is necessary to stabilize the colloidal solutions. However, if the electrolytes are present in higher concentration, then the ions of the electrolyte neutralize the charge on the colloidal particles may unite

  • Q : Coagulation what is the meaning of

    what is the meaning of fourth power of valency of an active ion?

  • Q : Atmospheric pressure Give me answer of

    Give me answer of this question. The atmospheric pressure is sum of the: (a) Pressure of the biomolecules (b) Vapour pressure of atmospheric constituents (c) Vapour pressure of chemicals and vapour pressure of volatile (d) Pressure created on to atmospheric molecules

  • Q : Thermodynamics 1 Lab Report I already

    I already did Materials and Methods section. I uploaded it with the instructions. Also, make sure to see Concept Questions and Thinking Ahead in the instructions that I uploaded. deadline is tomorow at 8 am here is the link to download all instructions because I couldn't attach all of t

  • Q : Formula of diesel Write a short note on

    Write a short note on the formula of diesel, petrol and also CNG?

  • Q : Problem on mole fraction of glucose

    Provide solution of this question. While 1.80gm glucose dissolve in 90 of H2O , the mole fraction of glucose is: (a) 0.00399 (b) 0.00199 (c) 0.0199 (d) 0.998

  • Q : Molality of Sulfuric acid Choose the

    Choose the right answer from following. The molality of 90% H2SO4 solution is: [density=1.8 gm/ml]  (a)1.8 (b) 48.4 (c) 9.18 (d) 94.6

  • Q : Question based on lowering of vapour

    Choose the right answer from following. The relative lowering of vapour pressure produced by dissolving 71.5 g of a substance in 1000 g of water is 0.00713. The molecular weight of the substance will be:  (a) 18.0 (b) 342 (c) 60 (d) 180