--%>

Theory of one dimensional motion

For motion in one dimension, the distribution of the molecules over quantum states, speeds, and energies can be deduced.

Here we show that the energy of a macroscopic gas sample can be described on the basis of our knowledge of the quantum states allowed to the molecules of the gas and the distribution expressed by the Boltzmann expression. We begin by studying the translational motion in one dimension of a collection of molecules. You will see how the procedure is fascillated by the partition function.

Partition function: the molecules of a gas that move along one dimension can have, any of the energies given by

1676_one dimensional motion.png 

For gas samples we can assume a cubic container and express a as V1/3, where V is the volume of the sample.

The partition function for one-dimensional translational motion can be developed by recognizing that
    
The translational energy of the lowest-energy state is small compared with the energies of most of the populated states and can be set equal to zero.
    
The translational-energy spacing between successive energy levels is small compared with the range of energies of the populated states.
    
The degeneracy of each energy level is unity.

On this basis, the partition function summation over the translational energies can be replaced by integration, and the partition function is expressed as

83_one dimensional motion1.png 

The integral is one of the definite integrals dealt by using the general result shown there, we obtain

1990_one dimensional motion2.png 

Example: calculate the partition function for the translational motion of N2 molecules free to move along one dimension of a 1-L cubic container. The temperature is 25°C.

Solution: the translational-energy factor h2/(8ma2) can be calculated conveniently from the expression of this equation. The mass of M of 1 mol of N2 molecules is 0.02801 kg, and V = 1 L = 10-3 m3. Thus
2163_one dimensional motion3.png 

962_one dimensional motion4.png 

= 1.180 × 10-40 J

The value of kT, to which the energy spacing factor is compared, is

kT = (1.3807 × 10-23 J K-1) (298.15 K) = 4.116 × 10-21 J

The partition function is calculated as

1331_one dimensional motion5.png 

this large partition function value indicates that very many states are available to the molecules. This result, in the calculations, from the smallness of h2/(8ma2compared to kT.

Average energy: the one dimensional translational energy of 1 mol of gas molecules can now be deduced. The general thermal-energy expression is

864_one dimensional motion6.png 

The partition function for one-dimensional translational motion gives
1661_one dimensional motion7.png 

substitution of the equation expressions in the equation for U - U0 gives

U - U0 = ½ RT

We have come by this long route to the result that we obtained from the simple classical kinetic-molecular theory. The translational energy per degree of freedom is ½ RT

   Related Questions in Chemistry

  • Q : What are different mechanisms for

    Nucleophilic substitution reactions in halides containing  - X bond may take place through either of the two different mechanisms,S<

  • Q : Chem Explain how dissolving the Group

    Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid.

  • Q : Advantages of doing your own chemistry

    What are the advantages of doing your own chemistry assignments? State your comment?

  • Q : Calculating Formulae Superphosphate has

    Superphosphate has the formula CaH4(PO4)2 H2O, what is the calculation to get the percentage of Phosphorus, I need to show the calculation. I know it is 30.9737622 u in weight and 2 atoms of the formula, but not sure how to work the calculation backwards.

  • Q : Which is polar HCl or HF Which one is

    Which one is polar HCl or HF?

  • Q : Theory of three dimensional motion

    Partition function; that the translational energy of 1 mol of molecules is 3/2 RT will come as no surprise. But the calculation of this result further illustrates the use of quantized states and the partition function to obtain macroscopic properties. The partition fu

  • Q : Mole fraction in vapours Choose the

    Choose the right answer from following. If two substances A and B have P0A P0B= 1:2 and have mole fraction in solution 1 : 2 then mole fraction of A in vapours: (a) 0.33 (b) 0.25 (c) 0.52 (d) 0.2

  • Q : Describe First Order Rate Equation The

    The integrated forms of the first order rate equations are conveniently used to compare concentration time results with this rate equation. Rate equations show the dependence of the rate of the reaction on concentration can be integrated to give expressions fo

  • Q : Reactivity of allyl and benzyl halides

    why allyl halide and haloarenes are more reactive than alkyl halide towards nucleophilic substitution

  • Q : Concentration of Calcium carbonate Help

    Help me to go through this problem. 1000 gms aqueous solution of CaCO3 contains 10 gms of carbonate. Concentration of the solution is : (a)10 ppm (b)100 ppm (c)1000 ppm (d)10000 ppm