--%>

Help

1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer. 2) Explain how dissolving the Group IV carbonate precipitate with 6M CH3COOH, followed by the addition of extra acetic acid, establishes a buffer with a pH of approximately 5. 3) A solution contains either Cr3+ or Ni2+ ion. Describe the reaction with a single reagent that will identify which ion is present. 4) The addition of S2- ion to Fe(OH)2(s). Explain why the addition of S2- ion to Cr(OH)3(s) does not result in the formation of Cr2S3(s). 5) A black precipitate remaining from the separation of Cr3+ and Fe2+ ions from Ni2+ ion is dissolved in HCl HNO3. Some NH3 is added, followed by several drops of dimethylglyoxime. a) A colorless solution results. What do you think has happened? b) What might have gone wrong? 6) A student was analyzing an unknown containing only Group IV cations. When the unknown was treated with 3M (NH4)2CO3 solution, a white precipitate formed. Because the acetic acid bottle was empty, the student used 6M HCl to dissolve the precipitate. Following the procedure of this experiment, the student then added 0.10M K2CrO4 solution as directed and no precipitate formed. Oxalic acid was added to the solution, and no precipitate formed. a) What mistake did the student make? b) How did the mistake affect the tests for the cations in solution?

   Related Questions in Chemistry

  • Q : Illustrate the Lewis Dot Structure

    Illustrate the Lewis Dot Structure for the CH4O.

  • Q : Reason for medications contain hcl What

    What is the reason behind this that some medications contain hcl?

  • Q : Describe Enzyme Catalyzed reactions

    Many enzyme catalyzed reactions obeys a complex rate equation that can be written as the total quantity of enzyme and the whole amount of substrate in the reaction system. Many rate equations that are more complex than first and se

  • Q : Problem on vapour pressure Choose the

    Choose the right answer from following. If P and P are the vapour pressure of a solvent and its solution respectively N1 and N2 and are the mole fractions of the solvent and solute respectively, then correct relation is: (a) P= PoN1 (b) P= Po N2 (c)P0= N2 (d)

  • Q : Problem based on molarity Choose the

    Choose the right answer from following. The molarity of a solution of Na2CO3 having 10.6g/500ml of solution is : (a) 0.2M (b)2M (c)20M (d) 0.02M

  • Q : Adiabatic compression A lean natural

    A lean natural gas is available at 18oC and 65 bars and must be compressed for economical pipeline transportation. The gas is first adiabatically compressed to 200 bars and then isobarically (i.e. at constant pressure) cooled to 25°C. The gas, which is

  • Q : Amount of glucose in blood What is the

    What is the normal amount of glucose in 100ml of blood (8–12 hrs after meal) is: (i) 8mg (ii) 80mg (iii) 200mg (iv) 800mg Choose the right answer from above.

  • Q : Molecular weight of solute Select right

    Select right answer of the question. A dry air is passed through the solution, containing the 10 gm of solute and 90 gm of water and then it pass through pure water. There is the depression in weight of solution wt by 2.5 gm and in weight of pure solvent by 0.05 gm. C

  • Q : Meaning of molality of a solution The

    The molality of a solution will be: (i) Number of moles of solute per 1000 ml of solvent (ii) Number of moles of solute per 1000 gm of solvent (iii) Number of moles of solute per 1000 ml of solution (iv) Number of gram equivalents of solute per 1000 m

  • Q : Problem on molality Select the right

    Select the right answer of the question. Calculate the molality of 1 litre solution of 93% H2SO4 (weight/volume). The density of the solution is 1.84 g /ml : (a) 10.43 (b) 20.36 (c) 12.05 (d) 14.05