--%>

Explain equilibrium and molecular distributions.

The equilibrium constant can be treated as a particular type of molecular distribution. Consider the simplest gas-phase reaction, one in which molecules of A are converted to molecules of B. the reaction, described by the equation

2090_equilibria.png 

Will proceed until a state of equilibrium is reached. Then, at a given temperature, there will be some ratio of the number of B molecules to the number of A molecules. Now we investigate what it is about the A and B molecules that determine the ratio of the numbers present in equilibrium. This simple, artificial example will show what molecular level factors operate to determine the position of a chemical equilibrium.

Consider the generalized patterns of energies of the states of the chemical species A and B in their standard states. The difference in the energies of the A and B states of lowest energy is εB0- εA0 = Δε0. This quantity is familiar as the molar quantity UB0 - UA0 = ΔU0, the difference in energy between 1 mol of A and 1 mol of B if all the molecules of both species are in their lowest possible energy states.

On a molecular basis, the question of the position of the equilibrium between A and B is phrased in this way. If a large number of molecules are allowed to equilibrate and distribute themselves throughout the energy level pattern of many as B molecules, i.e. occupy the B levels? The question is answered by application of the Boltzmann distribution expression.

Let NA0 be the number of molecules, which, at equilibrium, occupy the lowest energy level. This happens to be an A level. The total number of molecules in the A levels, indicated by Nam is given, according as

2304_equilibria1.png 

In a similar way the number of molecules NB distributed throughout the B levels is related to the number in the lowest-energy B states by

1068_equilibria2.png 

Since equilibrium is established between the distribution throughout the A and B states, the population of the lowest B state is related to the population of the lowest A state by the Boltzmann expression

2419_equilibria3.png 

2328_equilibria4.png 

The expressions for the population of B levels can now be rewritten as 

2040_equilibria5.png  

The equilibrium constant for the reaction of A to B might be expressed as the ration of the pressure or the concentration of B to A. both these terms will be dependent on, and proportional to, the number of moles or molecules of the two reagents. We can therefore write

1821_equilibria6.png 

The expressions for NB and NA can now be substituted to give

1730_equilibria7.png 

This result can be applied to any molecular transformation of the type 186_equilibria.png .

Notice that the formation of B is favored by ΔU0 values that are small or negative. This term is temperature independent (although it does enter the temperature dependent term = eΔε0/(RT)and is not determined by the pattern of energy levels. The formation of B is also favored by a large value of qB relative to that qA. Large partition function value result, according to the discussion, when many states are available to the molecules. Thus, the formation of B will be favored if the energy of the states of B are closely spaced and the number of states corresponding to these allowed energies is high.

The very simple example can be used to illustrate these general conclusions. The partition functions are very simply calculated as

708_equilibria8.png 

The equilibrium constant for the system can be calculated at the two temperatures of, say, 25and 1000°C. Equation can be used to give

K298 = e-1200/(8.314) (298) (3/2) = 0.92

K1273 = e-1200/(8.314) (1273) (3/2) = 1.34  

   Related Questions in Chemistry

  • Q : Acid Solutions Choose the right answer

    Choose the right answer from following. Volume of water needed to mix with 10 ml 10N NHO3 to get 0.1 N HNO3: (a) 1000 ml (b) 990 ml (c) 1010 ml (d) 10 ml

  • Q : Molar mass Select the right answer of

    Select the right answer of the question. Which is heaviest: (a)25 gm of mercury (b)2 moles of water (c)2 moles of carbon dioxide (d)4 gm atoms of oxygen

  • Q : Explain various chemicals associated

    During processing of food, several chemicals are added to it to augment its shelf life and to make it more attractive as well. Main types of food addi

  • Q : Mole fraction of solute The mole

    The mole fraction of the solute in 1 molal aqueous solution is: (a) 0.027 (b) 0.036 (c) 0.018 (d) 0.009What is the correct answer.

  • Q : Means of molality Give me answer of

    Give me answer of this question. The number of moles of solute per kg of a solvent is called its: (a) Molarity (b) Normality (c) Molar fraction (d) Molality

  • Q : Determining concentration in ppm A 500

    A 500 gm tooth paste sample has 0.2g fluoride concentration. Determine the concentration of F in terms of ppm level: (a) 250 (b) 200 (c) 400 (d) 1000Answer: (c) F-ions in ppm = (0.2/500) x 106 = 400

  • Q : Molality of glucose Help me to go

    Help me to go through this problem. Molecular weight of glucose is 180. A solution of glucose which contains 18 gms per litre is : (a) 2 molal (b) 1 molal (c) 0.1 molal (d)18 molal

  • Q : Basicity order order of decreasing

    order of decreasing basicity of urea and its substituents

  • Q : Explain polyhalogen compounds with

    Carbon compounds containing more than one halogen atom are called polyhalogen compounds. Most of these compounds are valuable in industry and agriculture. Some important polyhalogen compounds are described as follows:

    Q : Chemists have not created a periodic

    Explain the reason behind that the chemists have not created a periodic table of compounds?