--%>

Describe physical adsorption and its characteristics.

When the forces of attraction existing between adsorbate and adsorbent are van der Waal's forces, the adsorption is called physical adsorption. This type of adsorption is also known as physisorption or van der Waal's adsorption. Since the forces existing between adsorbent and adsorbate are very weak, therefore, this type of adsorption can be easily reversed by heating or by decreasing the pressure.

Characteristics of Physisorption

Some of the important characteristics of physisorption are as follows:

(i) Deficient of specificity: since the van der Waal forces are universal, a given surface of adsorbent does not show any preference for any specific gas. It can adsorb all the gases but to a different extent.

(ii) Reversible nature: physical adsorption of a gas by the solid is reversible and thus equilibrium is reached rapidly

Solid + Gas  1387_Physical adsorption.png  gas/solid + Heat

Thus, according to Le-chatelier's principle,

(a) Increase of pressure pushes the equilibrium in forward direction leading to more adsorption of gas and decrease of pressure cause desorption to occur.

(b) Since process is exothermic, therefore, lowering of temperature favours more adsorption and increase of temperature leads to desorption.

(iii) Surface area of adsorbent: the extent of adsorption increase with the increase of surface area of adsorbent. Thus, finely divided metals and rough surfaces are good adsorbents.

(iv) Nature of adsorbate: the amount of gas adsorbed by solid depends on nature of gas. In general, easily liquefiable gases (i.e gases with higher critical temperature) are readily as van der Waal forces are stronger near the critical temperature.

(v) Enthalpy of adsorption: the enthalpy of adsorption is low (20-40 kJ mol-1). This is because of weak nature of van der Waal's forces.

(vi) State of adsorbate: molecular state of adsorbate remains unaltered.

(vii) Activation energy: physical adsorption does not involve any chemical reaction and therefore, it requires very low activation energy.

   Related Questions in Chemistry

  • Q : Molarity A solution has volume 200ml

    A solution has volume 200ml and molarity 0.1.if it is diluted 5times then calculate the molarity of reasulying solution and the amount of water added to it.

  • Q : Mole fraction in vapours Choose the

    Choose the right answer from following. If two substances A and B have P0A P0B= 1:2 and have mole fraction in solution 1 : 2 then mole fraction of A in vapours: (a) 0.33 (b) 0.25 (c) 0.52 (d) 0.2

  • Q : Problem on making solutions The weight

    The weight of pure NaOH needed to made 250cm3 of 0.1 N solution is: (a) 4g  (b) 1g  (c) 2g  (d) 10g Choose the right answer from above.

  • Q : Avogadro's hypothesis Law Principle

    Avogadro's hypothesis Law Principle- Berzelius, a chemist tried

  • Q : Distribution law Help me to go through

    Help me to go through this problem. The distribution law is applied for the distribution of basic acid between : (a) Water and ethyl alcohol (b) Water and amyl alcohol (c) Water and sulphuric acid (d) Water and liquor ammonia

  • Q : Mole fraction of solute The mole

    The mole fraction of the solute in 1 molal aqueous solution is: (a) 0.027 (b) 0.036 (c) 0.018 (d) 0.009What is the correct answer.

  • Q : Molality of glucose Help me to go

    Help me to go through this problem. Molecular weight of glucose is 180. A solution of glucose which contains 18 gms per litre is : (a) 2 molal (b) 1 molal (c) 0.1 molal (d)18 molal

  • Q : Explain methods for industrial

    The important methods for the preparation of alcohol on large-scale are given below:    

  • Q : Vapour pressure of methanol in water

    Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water

  • Q : Electron Spin The total angular

    The total angular momentum of an atom includes an electron spin component as well as an orbital component.The orbital motion of each electron of an atom contributes to the angular momentum of the atom, as described earlier. An additional