--%>

Describe physical adsorption and its characteristics.

When the forces of attraction existing between adsorbate and adsorbent are van der Waal's forces, the adsorption is called physical adsorption. This type of adsorption is also known as physisorption or van der Waal's adsorption. Since the forces existing between adsorbent and adsorbate are very weak, therefore, this type of adsorption can be easily reversed by heating or by decreasing the pressure.

Characteristics of Physisorption

Some of the important characteristics of physisorption are as follows:

(i) Deficient of specificity: since the van der Waal forces are universal, a given surface of adsorbent does not show any preference for any specific gas. It can adsorb all the gases but to a different extent.

(ii) Reversible nature: physical adsorption of a gas by the solid is reversible and thus equilibrium is reached rapidly

Solid + Gas  1387_Physical adsorption.png  gas/solid + Heat

Thus, according to Le-chatelier's principle,

(a) Increase of pressure pushes the equilibrium in forward direction leading to more adsorption of gas and decrease of pressure cause desorption to occur.

(b) Since process is exothermic, therefore, lowering of temperature favours more adsorption and increase of temperature leads to desorption.

(iii) Surface area of adsorbent: the extent of adsorption increase with the increase of surface area of adsorbent. Thus, finely divided metals and rough surfaces are good adsorbents.

(iv) Nature of adsorbate: the amount of gas adsorbed by solid depends on nature of gas. In general, easily liquefiable gases (i.e gases with higher critical temperature) are readily as van der Waal forces are stronger near the critical temperature.

(v) Enthalpy of adsorption: the enthalpy of adsorption is low (20-40 kJ mol-1). This is because of weak nature of van der Waal's forces.

(vi) State of adsorbate: molecular state of adsorbate remains unaltered.

(vii) Activation energy: physical adsorption does not involve any chemical reaction and therefore, it requires very low activation energy.

   Related Questions in Chemistry

  • Q : Calculate molarity of a solution

    Provide solution of this question. Molarity of a solution prepared by dissolving 75.5 g of pure KOH in 540 ml solution is: (a) 3.05 M (b) 1.35 M (c) 2.50 M (d) 4.50 M

  • Q : Thermodynamics I) Sulphur dioxide (SO2)

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267

  • Q : Mole 2.0gram of dolomite is heated to a

    2.0gram of dolomite is heated to a constant weight of 1.0g. Calculate the total volume of CO2 produced at STP by this reation

  • Q : Question based on lowering of vapour

    Choose the right answer from following. The relative lowering of vapour pressure produced by dissolving 71.5 g of a substance in 1000 g of water is 0.00713. The molecular weight of the substance will be:  (a) 18.0 (b) 342 (c) 60 (d) 180

  • Q : C-X bond length in halobenzene less

    C-X bond length in halobenzene less then C-X bond lengthin CH3-x

  • Q : Problem on solutions The 2N aqueous

    The 2N aqueous solution of H2S04 contains: (a) 49 gm of H2S04 per litre of solution (b) 4.9 gm of H2S04 per litre of solution (c) 98 gm of H2S04

  • Q : What are isotonic and hypotonic

    The two solutions which are having equivalent osmotic pressure are called isotonic solutions. The isotonic solutions at the same temperature also have same molar concentration. If we have solutions having different osmotic pressures then the solution having different

  • Q : Vapour pressure of water Give me answer

    Give me answer of this question. 5cm3 of acetone is added to 100cm3 of water, the vapour pressure of water over the solution: (a) It will be equal to the vapour pressure of pure water (b) It will be less than the vapour pressure of pure water

  • Q : From where the tin is obtained From

    From where the tin is obtained? Briefly illustrate it.

  • Q : Calculating density of water using

    What is the percent error in calculating the density of water using the ideal gas law for the following conditions:  a. 110 oC, 1 bar   b. 210 oC 10 bar  c. 374 o