How haloalkanes are prepared from alcohols?
This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom. Different reagents can be used to get haloalkanes from alcohols as described below: Reaction by Halogen Acids: alcohols can be converted into haloalkanes by action with halogen acids. The reaction, in general, can be represented as Chlorolakanes are obtained by treating alcohols with HCl in the presence of anhydrous zinc chloride. The anhydrous ZnCl2 acts as dehydrating agent and thus favours the forward reaction (Le Chateliar principle). The mixture of HCl and anhydrous ZnCl2 is known as Lucas reagent. Bromoalkanes can also be obtained in an identical manner by heating alcohols with KBr or NaBr and conc. H2SO4.HBr is generated in situ (during the reaction) by reaction of KBr or NaBr with conc. H2SO4. KBr + H2SO4 KHSO4 + HBrC2H5OH + HBr C2H5Br + H2OThe reaction can also be carried out with conc. Solution (48%) of hydrobromic acid. Iodoalkanes are obtained by heating alcohols withKI and 95% H3PO4 (phosphoric acid). C2H5OH + HI C2H5I + H2OThe reaction can also be carried out with conc. solution (57%) of hydroiodic acid.Reactivity of halogen acids towards this reaction is: HI > HBr > HClIt is because of the fact that the bond dissociation energy of HI is less than that of HBr which in turn is less than that of HCl.Reactivity of alcohols towards this particular reaction is: tertiary > secondary > primaryIt is because of the fact that greater the number electron releasing groups on -carbon atom of alcohol more is the polarity of C-OH bond. Consequently greater is the ease with which it cleaves. Reaction by phosphorus halides: Chlorolakanes are obtained by reaction of alcohols with PCl3 or PCl5. Bromo and iodo alkanes are obtained by reaction of alcohols with a mixture of red phosphorus and Br2 or I2. The function of red phosphorus and Br2 or I2 is to get PBr3 and PI3 during the course of the reaction. PBr3 and PI3 being relatively unstable have to be prepared either in situ or just before use. They cannot be accumulated for long periods. For example, P4 + 6Br2 4PBr3 P4 + 6I2 4PI3 The alkyl halides are obtained in excellent yield (80%) in the reaction. The phosphorus halide method is better than halogen acid method because Certain alcohols such as, secondary and tertiary alcohols tend to dehydrate in the presence of halogen acids. Intermediate carbocation formed can undergo rearrangement in the presence of acids. Reaction by Thionyl Chloride: in this method the alcohol is refluxed with thionyl chloride in the presence of a small amount of pyridine. Refluxing is the process of heating a volatile liquid in a flask fitted with condenser so that the vapours are condensed back into the flask.The reaction of straight chain primary alcohols in the presence or absence of pyridine is called Darzen's procedure. Pyridine is used in the reaction to neutralize hydrogen chloride in the reaction.The above methods cannot be applied for conversion of phenols to aryl halides because carbon-oxygen bond in phenols has partial double bond character due to resonance and hence is stronger and difficult to break.
This is the common method for preparing haloalkanes in laboratory. Alcohols can be converted to haloalkanes by substitution of - OH group with a halogen atom.
Different reagents can be used to get haloalkanes from alcohols as described below: Reaction by Halogen Acids: alcohols can be converted into haloalkanes by action with halogen acids. The reaction, in general, can be represented as Chlorolakanes are obtained by treating alcohols with HCl in the presence of anhydrous zinc chloride. The anhydrous ZnCl2 acts as dehydrating agent and thus favours the forward reaction (Le Chateliar principle). The mixture of HCl and anhydrous ZnCl2 is known as Lucas reagent. Bromoalkanes can also be obtained in an identical manner by heating alcohols with KBr or NaBr and conc. H2SO4.HBr is generated in situ (during the reaction) by reaction of KBr or NaBr with conc. H2SO4. KBr + H2SO4 KHSO4 + HBrC2H5OH + HBr C2H5Br + H2OThe reaction can also be carried out with conc. Solution (48%) of hydrobromic acid. Iodoalkanes are obtained by heating alcohols withKI and 95% H3PO4 (phosphoric acid). C2H5OH + HI C2H5I + H2OThe reaction can also be carried out with conc. solution (57%) of hydroiodic acid.Reactivity of halogen acids towards this reaction is: HI > HBr > HClIt is because of the fact that the bond dissociation energy of HI is less than that of HBr which in turn is less than that of HCl.Reactivity of alcohols towards this particular reaction is: tertiary > secondary > primaryIt is because of the fact that greater the number electron releasing groups on -carbon atom of alcohol more is the polarity of C-OH bond. Consequently greater is the ease with which it cleaves. Reaction by phosphorus halides: Chlorolakanes are obtained by reaction of alcohols with PCl3 or PCl5. Bromo and iodo alkanes are obtained by reaction of alcohols with a mixture of red phosphorus and Br2 or I2. The function of red phosphorus and Br2 or I2 is to get PBr3 and PI3 during the course of the reaction. PBr3 and PI3 being relatively unstable have to be prepared either in situ or just before use. They cannot be accumulated for long periods. For example, P4 + 6Br2 4PBr3 P4 + 6I2 4PI3 The alkyl halides are obtained in excellent yield (80%) in the reaction. The phosphorus halide method is better than halogen acid method because Certain alcohols such as, secondary and tertiary alcohols tend to dehydrate in the presence of halogen acids. Intermediate carbocation formed can undergo rearrangement in the presence of acids. Reaction by Thionyl Chloride: in this method the alcohol is refluxed with thionyl chloride in the presence of a small amount of pyridine. Refluxing is the process of heating a volatile liquid in a flask fitted with condenser so that the vapours are condensed back into the flask.The reaction of straight chain primary alcohols in the presence or absence of pyridine is called Darzen's procedure. Pyridine is used in the reaction to neutralize hydrogen chloride in the reaction.The above methods cannot be applied for conversion of phenols to aryl halides because carbon-oxygen bond in phenols has partial double bond character due to resonance and hence is stronger and difficult to break.
Presence of small concentrations of appropriate electrolyte is necessary to stabilize the colloidal solutions. However, if the electrolytes are present in higher concentration, then the ions of the electrolyte neutralize the charge on the colloidal particles may unite
This is a very important aspect of Physical Chemistry in which knowledge of the size, shape, rigidity and electronic structure of molecules deduced from the experimental methods treated here goes hand in hand with the theoretical approaches of chemical reactions. Spec
The methods used for the preparation of phenols are given below: From aryl sulphonic acids
Choose the right answer from following. The vapour pressure lowering caused by the addition of 100 g of sucrose(molecular mass = 342) to 1000 g of water if the vapour pressure of pure water at 25degree C is 23.8 mm Hg: (a)1.25 mm Hg (b) 0.125 mm Hg (c) 1.15 mm H
Sulfur trioxide (SO3) is manufactured by the gas-phase oxidation of SO2 over a platinum catalyst: SO2 + ½ O2 à SO3 The catalyst is a non-porous ext
Can you please illustrate that HCl is polar or non-polar? Briefly illustrate it.
Choose the right answer from following. The amount of NaOH in gms in 250cm3 of a0.100M NaOH solution would be : (a) 4 gm (b) 2 gm (c) 1 gm (d) 2.5 gm
Select the right answer of the question. Equimolar solutions in the same solvent have : (a)Same boiling point but different freezing point (b) Same freezing point but different boiling poin (c)Same boiling and same freezing points (d) Different boiling and differe
Briefly describe the properties of the carbohydrates?
Choose the right answer from following. A molal solution is one that contains one mole of a solute in: (a) 1000 gm of the solvent (b) One litre of the solvent (c) One litre of the solution (d) 22.4 litres of the solution
18,76,764
1926338 Asked
3,689
Active Tutors
1450133
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!