--%>

Describe characteristics of halides and oxides.

Halides characteristics

(i) These trihalides are mainly covalent with the exception of BiF3 which is ionic.

(ii) The ionic character of trihalides increases in going down the group.

(iii) Like hydrides, these trihalides have pyramidal structure.

(iv) These trihalides except NX3 can be easily hydrolysed by water.

The inability of trihalides of N to hydrolyse is attributed to the non-availability of vacant d-orbitals in nitrogen.

(v) The trihalides of P, As, Sb (especially fluorides and chlorides) act as Lewis acids and combine with Lewis bases

PF3 + F2  1973_halides and oxides.png  PF5

SbF3 + 2F-  1973_halides and oxides.png   [SbF5]
2-

(vi) The pentahalides in general, have less thermal stability as compared to trihalides.

(vii) All the pentahalides act as Lewis acids. It is because the central atom can easily accept the halide ions due to presence of vacant d-orbital and can extend their co-ordination number.

(viii) PCl5 exists as molecule in gaseous state but in solid state it exists as [PCl4]+[PCl6]- and is ionic in nature. PBr5PI5 also exists in the ionic form in solid state.

Reactivity towards oxygen: the elements of this group combine with oxygen directly or indirectly to form a large number of different types of oxides.

Nature of oxides

All the oxides of nitrogen except NO and N2O and phosphorus are strongly acidic: oxides of arsenic are weakly acidic; oxides of antimony are amphoteric and those of bismuth are weakly basic.

Reason: the change in character from acidic to basic can be explained on the basis of the size of atoms. As the size of nitrogen atom is small and it has a strong positive field, it interacts with water more strongly pulling the electron pair between O - H bond and thus release of H+ ions.

However, this tendency diminishes with the increase in size and therefore decreases the acidic character or conversely increases the basic character.

As far as the stability of the oxides is connected it is found that oxides having elements in the higher oxidation state become less stable as we move down to group. This is because of the import pair effect.

   Related Questions in Chemistry

  • Q : Vapour pressure of a liquid Help me to

    Help me to go through this problem. The vapour pressure of a liquid depends on: (a) Temperature but not on volume (b) Volume but not on temperature (c) Temperature and volume (d) Neither on temperature nor on volume

  • Q : What is electrolytic dissociation? The

    The Debye Huckel theory shows how the potential energy of an ion in solution depends on the ionic strength of the solution.Except at infinite dilution, electrostatic interaction between ions alters the properties of the solution from those excepted from th

  • Q : Molar conductance what is the molar

    what is the molar conductance of chloropentaamminecobalt(III) chloride?

  • Q : Moles of chloride ion Select the right

    Select the right answer of the question. A solution of CaCl2 is 0.5 mol litre , then the moles of chloride ion in 500ml will be : (a) 0.25 (b) 0.50 (c) 0.75 (d)1.00

  • Q : Unit of mole fraction Provide solution

    Provide solution of this question. Unit of mole fraction is: (a) Moles/litre (b) Moles/litre2 (c) Moles-litre (d) Dimensionless

  • Q : Problem on endothermic or exothermic At

    At low temperatures, mixtures of water and methane can form a hydrate (i.e. a solid containing trapped methane). Hydrates are potentially a very large source of underground trapped methane in the pole regions but are a nuisance when they form in pipelines and block th

  • Q : Problem on mole fraction of glucose

    Provide solution of this question. While 1.80gm glucose dissolve in 90 of H2O , the mole fraction of glucose is: (a) 0.00399 (b) 0.00199 (c) 0.0199 (d) 0.998

  • Q : Tetrahedral holes In zinc blende

    In zinc blende structure, zinc atom fill up:(a) All octahedral holes  (b) All tetrahedral holes  (c) Half number of octahedral holes  (d) Half number of tetrahedral holesAnswer: (d) In zinc blende (ZnS

  • Q : Vapour pressure over mercury Choose the

    Choose the right answer from following. At 300 K, when a solute is added to a solvent its vapour pressure over the mercury reduces from 50 mm to 45 mm. The value of mole fraction of solute will be: (a)0.005 (b)0.010 (c)0.100 (d)0.900

  • Q : Problem related to molarity Provide

    Provide solution of this question. Increasing the temperature of an aqueous solution will cause: (a) Decrease in molality (b) Decrease in molarity (c) Decrease in mole fraction (d) Decrease in % w/w