--%>

Describe characteristics of halides and oxides.

Halides characteristics

(i) These trihalides are mainly covalent with the exception of BiF3 which is ionic.

(ii) The ionic character of trihalides increases in going down the group.

(iii) Like hydrides, these trihalides have pyramidal structure.

(iv) These trihalides except NX3 can be easily hydrolysed by water.

The inability of trihalides of N to hydrolyse is attributed to the non-availability of vacant d-orbitals in nitrogen.

(v) The trihalides of P, As, Sb (especially fluorides and chlorides) act as Lewis acids and combine with Lewis bases

PF3 + F2  1973_halides and oxides.png  PF5

SbF3 + 2F-  1973_halides and oxides.png   [SbF5]
2-

(vi) The pentahalides in general, have less thermal stability as compared to trihalides.

(vii) All the pentahalides act as Lewis acids. It is because the central atom can easily accept the halide ions due to presence of vacant d-orbital and can extend their co-ordination number.

(viii) PCl5 exists as molecule in gaseous state but in solid state it exists as [PCl4]+[PCl6]- and is ionic in nature. PBr5PI5 also exists in the ionic form in solid state.

Reactivity towards oxygen: the elements of this group combine with oxygen directly or indirectly to form a large number of different types of oxides.

Nature of oxides

All the oxides of nitrogen except NO and N2O and phosphorus are strongly acidic: oxides of arsenic are weakly acidic; oxides of antimony are amphoteric and those of bismuth are weakly basic.

Reason: the change in character from acidic to basic can be explained on the basis of the size of atoms. As the size of nitrogen atom is small and it has a strong positive field, it interacts with water more strongly pulling the electron pair between O - H bond and thus release of H+ ions.

However, this tendency diminishes with the increase in size and therefore decreases the acidic character or conversely increases the basic character.

As far as the stability of the oxides is connected it is found that oxides having elements in the higher oxidation state become less stable as we move down to group. This is because of the import pair effect.

   Related Questions in Chemistry

  • Q : Mass percent Help me to go through this

    Help me to go through this problem. 10 grams of a solute is dissolved in 90 grams of a solvent. Its mass percent in solution is : (a) 0.01 (b) 11.1 (c)10 (d) 9

  • Q : Mole fraction of solute The mole

    The mole fraction of the solute in 1 molal aqueous solution is: (a) 0.027 (b) 0.036 (c) 0.018 (d) 0.009What is the correct answer.

  • Q : What is adsorption and its examples. In

    In a liquid a solid substance a molecule present within the bulk of the substance is being attracted infirmly from all sides by the neighbouring molecules. Hence there is no bet force acting on the molecule or there are no unbalanced forces of the molecule. On the oth

  • Q : Procedure to judge that organic

    Describe briefly the procedure to judge that the given organic compound is pure or not?

  • Q : Utilization of glacial acetic acid What

    What is the utilization of glacial acetic acid? Briefly describe the uses.

  • Q : Explain the polymers and its types.

    Polymers are the chief products of modern chemical industry which form the backbone of present society. Daily life without the discovery and varied applications of polymers would not have been easier and colourful. The materials made of polymers find multifarious uses and applications in all walk

  • Q : Describe Point Groups. For any

    For any symmetric object there is a set of symmetry operations that, together, constitute a mathematical group, called a point group.It is clear from the examples that most molecules have several elements of symmetry. The H2O

  • Q : Examples of reversible reaction

    Describe some examples of a reversible reaction?

  • Q : Question of vapour pressure Choose the

    Choose the right answer from following. Vapour pressure of a solution is: (a) Directly proportional to the mole fraction of the solvent (b) Inversely proportional to the mole fraction of the solute (c) Inversely proportional to the mole fraction of the solvent (d

  • Q : Define thermal energy The thermal part

    The thermal part of the internal energy and the enthalpy of an ideal gas can be given a molecular level explanation. All the earlier development of internal energy and enthalpy has been "thermodynamic". We have made no use o