--%>

Describe characteristics of halides and oxides.

Halides characteristics

(i) These trihalides are mainly covalent with the exception of BiF3 which is ionic.

(ii) The ionic character of trihalides increases in going down the group.

(iii) Like hydrides, these trihalides have pyramidal structure.

(iv) These trihalides except NX3 can be easily hydrolysed by water.

The inability of trihalides of N to hydrolyse is attributed to the non-availability of vacant d-orbitals in nitrogen.

(v) The trihalides of P, As, Sb (especially fluorides and chlorides) act as Lewis acids and combine with Lewis bases

PF3 + F2  1973_halides and oxides.png  PF5

SbF3 + 2F-  1973_halides and oxides.png   [SbF5]
2-

(vi) The pentahalides in general, have less thermal stability as compared to trihalides.

(vii) All the pentahalides act as Lewis acids. It is because the central atom can easily accept the halide ions due to presence of vacant d-orbital and can extend their co-ordination number.

(viii) PCl5 exists as molecule in gaseous state but in solid state it exists as [PCl4]+[PCl6]- and is ionic in nature. PBr5PI5 also exists in the ionic form in solid state.

Reactivity towards oxygen: the elements of this group combine with oxygen directly or indirectly to form a large number of different types of oxides.

Nature of oxides

All the oxides of nitrogen except NO and N2O and phosphorus are strongly acidic: oxides of arsenic are weakly acidic; oxides of antimony are amphoteric and those of bismuth are weakly basic.

Reason: the change in character from acidic to basic can be explained on the basis of the size of atoms. As the size of nitrogen atom is small and it has a strong positive field, it interacts with water more strongly pulling the electron pair between O - H bond and thus release of H+ ions.

However, this tendency diminishes with the increase in size and therefore decreases the acidic character or conversely increases the basic character.

As far as the stability of the oxides is connected it is found that oxides having elements in the higher oxidation state become less stable as we move down to group. This is because of the import pair effect.

   Related Questions in Chemistry

  • Q : Explanation of oxygen family. Group 16

    Group 16 of periodic

  • Q : Explain Vapour Pressure Composition A

    A pressure composition diagram for a liquid vapor system can be used to show the composition of the liquid and equilibrium vapor.Vapor equilibrium data are useful in the study of distillations. It is of value to have diagrams showing not only the vapor pre

  • Q : Reducible Representations The number of

    The number of times each irreducible representation occurs in a reducible representation can be calculated.Consider the C2v point group as described or Appendix C. you can see that (1) sum of

  • Q : Freezing point of equimolal aqueous

    The freezing point of equi-molal aqueous solution will be maximum for:            (a) C6H5NH3+Cl-(aniline hydrochloride)  (b) Ca(NO3

  • Q : Molal elevation constant of water The

    The boiling point of 0.1 molal aqueous solution of urea is 100.18oC  at 1 atm. The molal elevation constant of water is: (a) 1.8    (b) 0.18   (c) 18    (d) 18.6Answer: (a) Kb

  • Q : Question based on vapour pressure While

    While a substance is dissolved in a solvent, the vapour pressure of the solvent is decreased. This results in: (a) An increase in the boiling point of the solution (b) A decrease in the boiling point of solvent (c) The solution having a higher freezing point than

  • Q : How to establish nomenclature for

    In the common chemistry terminologies, aliphatic halogen derivatives are named as alkyl halides. The words, n-, sec-, tert-, iso-, neo-, and amyl are

  • Q : Which solution will have highest

    Which solution will have highest boiling point:(a) 1% solution of glucose in water  (b) 1% solution of sodium chloride in water  (c) 1% solution of zinc sulphate in water  (d) 1% solution of urea in waterAnswer: (b) Na

  • Q : Alkaline medium The amount of KMnO 4

    The amount of KMnO4 required to prepare 100 ml of 0.1N solution in alkaline medium is: (a) 1.58 gm (b) 3.16 gm (c) 0.52 gm (d) 0.31 gmAnswer: (a) In alkaline medium KMnO4 act as ox

  • Q : Nuclear Magnetic Resonance The nuclear

    The nuclear states produced by a magnetic field are studied in nuclear magnetic resonance spectroscopy.The frequency of the radiation that corresponds to the nuclear magnetic energy level spacings and the weakness of the radiation absorption that must be e